摘要
采用高速铣床对4Cr5MoSiV1钢注塑成型模具进行硬态铣削,研究切削加工参数对切削力的影响,通过多因素法正交试验,利用改进的BP神经网络建立了切削力的神经网络模型,将网络预测结果经过现场加工实践检验其准确性,利用MATLAB分析切削参数的影响。结果表明:人工神经网络能准确地预测铣削力的大小,模型具有良好的泛化能力和自适应能力;在高转速、小切深、合适的进给速度以及微量切削液状态下铣削力较小,为优化模具硬态铣削的切削参数并对其实际生产应用提供了较好的依据。
Taking the hard milling of the plastic mold parts(cavity) as an example,using a hardened 4Cr5MoSiV1 steel and high-speed milling,the empirical model of the cutting force model was carried out with the improved BP neural network and a multi-factorial orthogonal test,the accuracy of the cutting force network prediction was examined by field-processing practice(practice of hard milling of the mold parts),the cutting parameters was analyzed by using MATLAB software.The results show that the artificial neural network can predict the size of milling force well and has good generalization ability and adaptive capacity;the smaller milling forces can be attained by using higher spindle speed,appropriate feed rate,lower axial and radial depth of milling parameters,which provide the foundation for selecting cutting parameters properly and the die and mold manufacture.
出处
《制造技术与机床》
CSCD
北大核心
2010年第12期100-104,共5页
Manufacturing Technology & Machine Tool
基金
上海市教委自然科学基金项目(gjd-07050)
上海工程技术大学科技发展基金资助项目(2008xy60)
关键词
模具高速铣削
BP神经网络
铣削力模型
参数优化
High-speed Milling of Mold Parts
Improved BP Neural Network
Milling Force Model
Parameters Optimization