摘要
通过将系数含有幂与二项式系数的交错级数型常系数线性微分方程化为可逐次积分的线性微分方程,找出了求这类方程通解的方法与理论,证明了所得定理,并通过实例介绍了它的应用。
By transforming the interlace series type constant coefficient linear differential equation with coefficient contains power and binomial coefficients into the linear differential equation of successive integral,the theory and method for the general solution of this kind of equation are determined.The theorem obtained is proved strictly and the application is introduced through examples.
出处
《荆楚理工学院学报》
2010年第11期39-42,共4页
Journal of Jingchu University of Technology
关键词
幂
二项式系数
交错级数
逐次积分
线性微分方程
power
binomial coefficient
interlace series
successive integral
linear differential equation