期刊文献+

聚类分析在入侵检测中的应用 被引量:2

The Application of clustering Analysis in the Intrusion Detection
下载PDF
导出
摘要 在对现有的入侵检测技术研究的基础上,着重对数据挖掘技术中的聚类分析方法在入侵检测领域中的应用进行了研究。通过分析网络中数据的特点,提出了一种基于改进的k-means算法的无监督二次聚类算法,并用入侵检测权威数据集KDD Cup1999作为实验数据将其实现,实验表明,该算法具有较高的检测率和较低的误检率。 On the basis of the research on current intrusion detection technology, the application of clustering analysis in intrusion detection field is described. A twice clustering algorithm without supervising based on improved K-means algorithm is put forward by analyzing the data in the net. And the algorithm is actualized by using KDD Cup 1999 which is the authoritative data in intrusion detection. The experiment proves that the new algorithm has high right detecting rate and low error detecting rate.
作者 孙珊珊
出处 《河北省科学院学报》 CAS 2010年第3期31-34,共4页 Journal of The Hebei Academy of Sciences
关键词 入侵检测 数据挖掘 聚类分析 Intrusion detection Data mining Clustering analysis
  • 相关文献

参考文献3

  • 1J. MACQUEEN. Some methods for classification and analysis of multivariate observations[J]. Proc. 5th Berkeley Syrup. Math. Statist, 1967(1): 281--297.
  • 2周兵,沈钧毅,彭勤科.Hybrid:一种两阶段的聚类算法[J].计算机工程,2005,31(13):1-3. 被引量:3
  • 3KDD99. KDD99 Cup dataset [DB/OL], 1999. http://ies. uci. edu/databases/kddcup99.

二级参考文献6

  • 1Raymond T, Hau N J. Efficient and Effective Clustering Methods for Spatial Data Mining[A]. The 20^th VLDB Conference, Santiago, Chile,1994:144-155.
  • 2Zhang Tian, Ramakrishnan R, Livny M. BIRCH: An Efficient Data Clustering Method for Very Large Databases[A]. Proceedings of the ACM SIGMOD Conference on Management of Data, Montreal,Canada, 1996:103-114.
  • 3Ester M, Kriegel H P, Sander J, et al. A Density-based Algorithm for Discovering Clusters in large Spatial Database with Noise[A]. 2^nd Intl Conf on Knowledge Discovering in Databases and Data Mining,Portland, USA, 1996:226-231.
  • 4Guha U, Rastogi R, Shim K. CURE: An Efficient Clustering Algorithm for Large Databases[J]. Pergamon Information Systems,2001, 26(1): 35-58.
  • 5Karypis G Han Eui—Hong(Sam),Kumar V.CHAMELEON:A Hierarchical Clustering Algorithm Using Dynamic Modeling.Computer,1999.32:68-75.
  • 6周兵,沈钧毅,彭勤科.基于随机抽样和聚类特征的聚类算法[J].西安交通大学学报,2003,37(12):1234-1237. 被引量:6

共引文献2

同被引文献14

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部