期刊文献+

小波多分辨率分析改进互连结构电容提取 被引量:2

Capacitance Extraction of Interconnects by the Wavelet Multiresolution Decomposition
下载PDF
导出
摘要 本文将点匹配矢量法矩阵视作类似离散图像信号的一组数字信号矢量,进行小波多分辨率分解对该矩阵进行拟对角化压缩,克服了以往小波基直接展开的矩量法在求解二维与三维电磁问题时的困难.文章例子的计算结果说明了这种方法在将矩量法得到的满矩阵变换为稀疏矩阵时具有较高的效率.电容参数提取的效率也由于矩阵的稀疏化得到了提高.文中的数据值结果与文献及FASTCAP软件的结果吻合. Instead of the direct expansion of the charge distribution by the orthogonal wavelet basis,the large full matrix gained from MoM (Method of Moments) discretization of the integral equations is taken as discrete digital signals and sparsified by two dimensional multiresolution representation.Thus,the difficulty of using wavelets on the two and three dimensional structures is overcome.Computational results are given for several typical interconnects and the data obtained show that the proposed method substantially sparsifies the matrix equation.The capacitance values calculated by the matrix equations with high sparsity agree well with the results of the previous papers and that of capacitance extractor FASTCAP.
出处 《电子学报》 EI CAS CSCD 北大核心 1999年第5期111-114,共4页 Acta Electronica Sinica
基金 国家自然科学基金
关键词 互连结构 分布电容矩阵 小波多分辨率 IC Interconnects,Distributed capacitance matrix,Method of moments the Wavelet Multiresolution Representation
  • 相关文献

参考文献1

  • 1Zheng Ji,Electron Lett,1997年,33卷,3期,217页

同被引文献15

  • 1(美)崔锦泰 程正兴(译).小波分析导论[M].西安:西安交通大学出版社,1995..
  • 2彭玉华.小波分析的若干应用(西安交通大学博士学位论文)[M].西安,1995.43-70.
  • 3(美)R.F.哈林顿 王尔杰译.计算电磁场的矩量法[M].国防工业出版社,1981.49-73.
  • 4陈开周.最优化方法[M].西安电子科技大学出版社,1998.74-87.
  • 5刘贵中.小波分析及其应用[M].西安:西安电子科技大学出版社,1995..
  • 6[3]GOLIK W L.Wavelet packets for fast Solution of electromagnetic integral equation[J].IEEE Trans on AP,1998,46(5):618-624.
  • 7[4]ELLIOT R S.Antenna theory and design[M].Englewood Cliffs.NJ:Premice-Hall.1981.
  • 8[5]ELLIOT R S,KURT L A.The design of small slot array[J].IEEE Trans on Antennas Propagat,1978,26(2):214-219.
  • 9[6]ROBERT L.Wagner,Weng Cho Chew.A study of wavelets for the solution of electromagnetic integral equations[J].IEEE Trans.AP,1995,43(8):802-810.
  • 10[8]DAUBECHIES I.Orthonormal bases of compactly supported wavelets[J].Comm Pure applied Math.1988,41:909-996.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部