期刊文献+

次椭圆Laplace算子特征值的迹公式

Trace Formula of Eigenvalues of Subelliptic Laplacian
下载PDF
导出
摘要 考虑Heisenberg群上次椭圆算子特征值的Riesz平均,先建立相关特征值的迹公式,得到对应的Riesz平均,再借助Riesz平均,研究Heisenberg群上次椭圆算子的离散谱,建立该算子特征值的Riesz平均不等式,进而估计其特征值. The authors mainly focused their attention on the Riesz means of the eigenvalues of subelliptic Laplacian on the Heisenberg group, established the trace formula of associated eigenvalues, then obtained the corresponding Riesz means. We can use the Riesz means to study discrete spectrum of subelliptic Laplaeian on the Heisenberg group, to establish inequalitiy for Riesz means of the eigenvalues of operators and to estimate eigenvalues.
作者 贾高 熊雅
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2010年第6期899-902,共4页 Journal of Jilin University:Science Edition
基金 上海市重点学科项目基金(批准号:S30501) 上海市科研创新项目基金(批准号:10zz93)
关键词 HEISENBERG群 RIESZ平均 Lie括号 次椭圆Laplace算子 Heisenberg group Riesz means Lie bracket suhelliptic Laplacian
  • 相关文献

参考文献15

  • 1Harrell E M,Hermi L.Differential Inequalities for Riesz Means and Weyl-Type Bounds for Eigenvalues[J].Journal of Functional Analysis,2008,254(12):3173-3191.
  • 2Harrell E M,Stubbe J.On Trace Identities and Universal Eigenvalue Estimates for Some Partial Differential Operators[J].Trans Amer Math Soc,1997,349(5):1797-1809.
  • 3Hile G N,Protter M H.Inequalities for Eigenvalues of the Laplacian[J].Indiana Univ Math J,1980,29:523-538.
  • 4Soufi A E,Harrell E M,Ilias S.Universal Inequalities for the Eigenvalues of Laplace and Schrdinger Operators on Submanifolds[J].American Mathematical Society,2009,361(5):2337-2350.
  • 5Ashbaugh M S,Hermi L.A Unified Approach to Universal Inequalities for Eigenvalues of Elliptic Operators[J].Pacific J Math,2004,217(2):201-220.
  • 6Ashbaugh M S,Hermi L.On Harrell-Stubbe Type Inequalities for the Discrete Spectrum of a Self-adjoint Operator[J/OL].2007-12-28.http://arxiv.org/abs/0712.4396.
  • 7Ashbaugh M S,Hermi L.Universal Inequalities for Higher-Order Elliptic Operators[J].Proceedings of the American Mathematical Society,1998,126(9):2623-2630.
  • 8Helffer B,Robert D.Riesz Means of Bounded States and Semi-classical Limit Connected with a Lieb-Thirring Conjecture Ⅱ[J].Ann Inst H Poincaré,Phys Théor,1990,53(2):139-147.
  • 9Levy-Bruhl P.Résolubilité Locale Et Globale Dópérateurs Invariants Du Second Ordre Sur Des Groupes De Lie Nilpotents[J].Bull Sci Math,1980,104:369-391.
  • 10SUN Li-min.The Riesz Means of Eigenfunction Expansions for Sub-Laplacian on a Class of Homogeneous Groups[J] Northeastern Math J,1993,9(1):127-133.

二级参考文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部