期刊文献+

广义矩阵环的Hilbert性和稳定性

Hilbert Property and Stability of Generalized Matrix Rings
下载PDF
导出
摘要 用经典环论方法证明了对于广义矩阵环Λ=〔RMNS〕,Λ是Hilbert环(或满足S-稳定秩环)当且仅当R与S都是Hilbert环(或满足S-稳定秩环). For a generalized matrix ring Λ=〔RMNS〕, we showed that Λ is a Hilbert ring(resp.a ring satisfying S-stable range) if and only if R and S are Hilbert rings by means of classical method in ring theory.
作者 任艳丽 王尧
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2010年第6期903-906,共4页 Journal of Jilin University:Science Edition
基金 江苏省自然科学基金(批准号:BK2007517)
关键词 广义矩阵环 Hilbert环 弱单式正则环 满足S-稳定秩环 满足弱单式1-稳定秩环 generalized matrix ring; Hilbert ring; weakly unit regular ring; ring satisfies S-stable range; ring satisfies a weakly unit 1-stable range;
  • 相关文献

参考文献3

二级参考文献32

  • 1[1]Ara, P., Strongly π-regular rings have stable range one [J], Proc. Amer. Math. Soc.,124(1996), 3293-3298.
  • 2[2]Ara, P., Goodearl, K. R., O'Meara, K. C. & Pardo, E.. Diagonalization of matrices over regular rings [J], Linear Algebra Appl., 265(1997), 147-163.
  • 3[3]Ara, P., Goodearl, K. R., O'Meara, K. C. & Pardo, E., Separative cancellation for projective modules over exchange rings [J], Israel J. Math., 105(1998), 105-137.
  • 4[4]Ara, P., Goodearl, K. R., O'Meara, K. C. & Raphael, R., K1 of separative exchange rings and C*-algebras with real aank zero [J], Pacific J. Math., 195(2000), 261-273.
  • 5[5]Ara, P., Goodearl, K. R. & Pardo, E., K0 of purely infinite simple regular rings [J],K-Theory, 26(2002), 69-100.
  • 6[6]Barioli, F., Facchini, A., Raggi, F. & Rios, J., Krull-Schmidt theorem and homogeneoue semilocal rings [J], Comm. Algebra, 29(2001), 1649-1658.
  • 7[7]Chen, H., Exchange rings with artinian primitive factors [J], Algebra Represent. Theory,2(1999), 201-207.
  • 8[8]Chen, H., Related comparability over exchange rings [J], Comm. Algebra, 27(1999),4209-4216.
  • 9[9]Chen, H., On stable range conditions [J], Comm. Algebra, 28(2000), 3913-3924.
  • 10[10]Chen, H., Regular rings with finite stable range [J], Comm. Algebra, 29(2001), 157-166.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部