期刊文献+

具有时滞的昼夜节律模型的周期振荡

Periodic Oscillations of a Delayed Circadian Rhythm Model
下载PDF
导出
摘要 对分子水平下一类具有时滞的昼夜节律模型,通过讨论其变分系统超越特征方程根的分布情况,得到了系统周期振荡的充分条件;应用全局Hopf分支理论,将分支周期解的存在性由局部延拓到全局,并通过数值例子验证了理论分析结果. A delayed circadian rhythm model was studied. By analyzing the roots of transcendental characteristic equation for linear system, periodic oscillations were established. Furthermore, global existence of periodic solutions was obtained with the help of global Hopf bifurcation theory. Finally, numerical examples were reported to confirm our theory.
作者 庄科俊
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2010年第6期921-925,共5页 Journal of Jilin University:Science Edition
基金 安徽省自然科学基金(批准号:090416222) 安徽省高校自然科学研究项目(批准号:KJ2009B076Z)
关键词 昼夜节律模型 时滞 HOPF分支 周期振荡 circadian rhythm model delay Hopf bifurcation periodic oscillation
  • 相关文献

参考文献8

  • 1Goodwin B C.Oscillatory Behavior in Enzymatic Control Processes[J].Advances in Enzyme Regulation,1965,3:425-437.
  • 2Scheper T O,Klinkenberg D,Pennartz C,et al.A Mathematical Model for the Intracellular Circadian Rhythm Generator[J].Journal of Neuroscience,1999,19(1):40-47.
  • 3Lema M A,Golombek D A,Echave J.Delay Model of the Circadian Pacemaker[J].Journal of Theoretical Biology,2000,204:565-573.
  • 4游爱玲,赵秋英,张慧慧,张春蕊.时滞昼夜节律起搏器模型的稳定性分析及仿真[J].东北林业大学学报,2008,36(4):75-76. 被引量:1
  • 5Verdugo A,Rand R.Hopf Bifurcation in a DDE Model of Gene Expression[J].Communications in Nonlinear Science and Numerical Simulation,2008,13(2):235-242.
  • 6RUAN Shi-gui,WEI Jun-jie.On the Zeros of Transcendental Functions with Applications to Stability of Delay Differential Equations with Two Delays[J].Dynamics of Continuous,Discrete and Impulsive Systems Series A:Mathematical Analysis,2003,10:863-874.
  • 7Hassard B D,Kazarinoff N D,Wan Y H.Theory and Applications of Hopf Bifurcation[M].Cambridge:Cambridge University Press,1981.
  • 8WU Jian-hong.Symmetric Functional Differential Equations and Neural Networks with Memory[J].Transactions of the American Mathematical Society,1998,350:4799-4838.

二级参考文献5

  • 1Scheper T O, Klinkenberg D, Pennartz C, et al. A mathematical model for the intracellular circadian rhythm generator[ J]. J theor Biol, 1999,19:40 - 47.
  • 2Scheper T O, Klinkenberg D, Pelt J V, et al. A model of molecular circadian clocks: multiple mechanisms for phase shifting and a requirement for strong nonlinear interaction [ J ]. J Biol Rhythms, 1999,14:213 - 220.
  • 3Martin A Lema, Diego A Golombek, Julian Echave. Delay model of the circadian pacemaker[J], J theor Biol,2000,204:565 -573.
  • 4Ruan S, Wei J. On the zeros of a third degree exponential polynomial with applications to a delayed model for the control of testosterone secretion[ J ]. IMA J Math Appl Medic Biol,2001,18 :41 -52.
  • 5李经才,于多,王芳,何颖.生物钟基因研究新进展[J].遗传,2004,26(1):89-96. 被引量:20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部