摘要
已有的多变量相关性指标(如复相关、偏相关、广义相关系数、多向列联表分析、和谐系数等),都是从代数的角度进行定义的。文中用数性积的几何意义解释了Pearson相关系数r,得到了一个与r等价的度量两个变量之间相关关系密切程度指标———平行四边形的面积。在此基础上,逐步推广到p维情况,并且得到了衡量p个随机变量之间相关性指标———p维平行2p面体的体积。最后举例说明了其应用。
The existing measures of multivariable correlativity,for example,complex related coefficient,partial related coefficient and gener alized related coefficient are all defined from the algebraic angel.This paper attempts to explain Pearson related coefficient `r' from the geometrical meaning of dot conduct,and qives a new measure equivalent to `r' the area of parallelogram.On this base,we progressively extend it to the p-dimensional case and obtain the index of measuring correlation for p-dimens onal random variable.Finaly we cite an example to explain its application.
出处
《南京邮电学院学报》
1999年第1期87-91,共5页
Journal of Nanjing University of Posts and Telecommunications(Natural Science)
关键词
几何相关系数
Ω检验法则
随机变量
相关性指标
P dimensional parallel 2p polyhedron
Geometric related coefficient
Ω test rule