期刊文献+

一种基于图像灰度和方差信息的图像分割方法 被引量:4

An image segmenting method based on image gray and variance information
下载PDF
导出
摘要 针对C-V方法对非二值图像分割不理想,运行效率不高的问题,提出一种改进的C-V方法。在C-V方法只运用图像灰度信息的基础上,加入基于图像局部方差的信息,并且设置加权参数k,通过k来控制基于图像的灰度信息和方差信息的驱动力在整个图像分割驱动力中的比重,使得改进C-V方法能利用图像区域灰度信息和区域方差信息对非二值图像进行分割,同时应用隐式方案的数值实现方式对改进方法进行数值实现。图像分割实验结果表明,该方法能够更为准确地提取非二值图像边界,减少迭代次数。 An improved C-V method was proposed aiming at unfavorable result and low efficiency when the original C-V method was used to segment non-binary image. Considering that the original C-V method only used the gray information, the improved C-V method added local variance information of the image. In addition, the improved C-V method set a weight parameter k, and by adjusting k it can control the proportions of the driving force based on the gray and variance information in the process of segmenting the entire image. Thus, this method can segment non-binary image by the regional gray and variance information. Simultaneously, the implicit scheme was used in the process of the numerical realization of the improved method. The experimental results show that the improved C-V method can extract edge of non-binary image more accurately and reduce the times of iteration.
出处 《量子电子学报》 CAS CSCD 北大核心 2010年第6期677-682,共6页 Chinese Journal of Quantum Electronics
基金 国家自然科学基金(10671156) 陕西省自然科学基础研究计划数字图像合成及其匹配技术研究基金(2009JM8004-3) 西北大学研究生交叉学科基金(08YJC12)资助项目
关键词 图像处理 改进C—V方法 偏微分方程 非二值图像 图像方差 image processing improved C-V method partial differential equations non-binary image image variance
  • 相关文献

参考文献7

  • 1Wang Dakai,Hou Yuqing,Peng Jinye.Partial Differential Equation in Image Procressing(图像处理的偏微分方程方法)[M].Beijing:Science Press,2008(in Chinese).
  • 2Chan T F,Vese L.Active contours without edges[J].IEEE Transactions on Image Processing,2001,10(2):266-277.
  • 3Song Gao,Bui T D.Image segmentation and selective smoothing by using Mumford-Shah model[J].IEEE Trans.on Image Processing,2005,14(10):1537-1549.
  • 4Kim S,Lim H.A hybrid level set segmentation for medical imagery[C].Proc.of IEEE Nuclear Science Symposium and Medical Imaging Conference,San-Francisco,2005,1790-1794.
  • 5朱峰,宋余庆,朱玉全,郭依正.基于梯度的混合Mumford-Shah模型医学图像分割[J].计算机工程,2007,33(24):200-202. 被引量:13
  • 6李俊,杨新,施鹏飞.基于Mumford-Shah模型的快速水平集图像分割方法[J].计算机学报,2002,25(11):1175-1183. 被引量:125
  • 7Zhu Xuan.Study of Image Denoising,InPainting and Zooming on Partial Differential Equation(基于偏微分方程的图像去噪、修复及放大研究)[D].Xi'an:Doctorial Dissertation of Northwest University,2008(in Chinese).

二级参考文献9

  • 1李俊.基于曲线演化的图像分割方法及应用:博士学位认文[M].上海:上海交通大学,2001..
  • 2Kass M,Witkin A,Terzopoulos D.Snakes:Active Contour Models[C]//Proceedings of the 1st International Conference on Computer Vision.London:IEEE Computer Society Press,1987:259-268.
  • 3Malladi R,Sethian J,Vemuri A.Shape Modeling with Front Propagation:A Level Set Approach[J].IEEE Transactions on Pattern Analysis Machine Intelligence,1995,17(2):158-175.
  • 4Chan T,Vese L.Active Contours Without Edges[J].IEEE Trans.on Image Processing,2001,10(2):266-277.
  • 5Chan T,Vese L.An Efficient Variational Multiphase Motion for the Munford-shah Segmentation Model[C]//Proceedings of Asilomar Conference on Signals,Systems and Computers.Pacific Grove,CA:[s.n.],2002:490-494.
  • 6Gao Song,Tien D.Image Segmentation and Selective Smoothing by Using Mumford-shah Model[J].IEEE Trans.on Image Processing,2005,14(10):1537-1549.
  • 7Kim S,Lim H.A Hybrid Level Set Segmentation for Medical Imagery[C]//Proceedings of IEEE Nuclear Science Symposium & Medical Imaging Conference.San Francisco,CA:[s.n.],2005:1790-1794.
  • 8Cheng L,Yang J,Fan X,et al.A Generalized Level Set Formulation of the Mumford-Shah Functional for Brain MR Image Segmentation[M].Heidelberg:Springer Berlin,2005..
  • 9Gibou R,Fedkiw A.Fast Level Set Based Algorithm for Segmentation[C]//Proceedings of the 4th Annual Hawaii International Conference on Statistics and Mathematics.Stanford:[s.n.],2005:281-291.

共引文献135

同被引文献39

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部