期刊文献+

量子纠错电路的模块化设计与优化 被引量:3

Design and optimization of quantum error-correction circuit with module
下载PDF
导出
摘要 在无测量状态下,对三量子位纠错电路进行设计和优化,提出模块化概念设计和优化量子纠错电路。随着量子位的增加,三量子位纠错电路作为模块可用于五量子位纠错电路中,五量子位纠错电路作为模块可用于七量子位纠错电路中,以此类推。少量子位纠错电路作为多量子位纠错电路的部分模块使用,可使得多量子位纠错电路设计简化,冗余位减少,使之量子代价较低。 The 3-qubit error-correction quantum circuit is realized and optimized in the non-measuring condition. The modular thought is presented to design and optimize the quantum error-correction circuit. With the quantum bits increasing, the error-correction circuit of 3-qubits can be used in the error-correction circuit of 5-qubits as a module. The error-correction circuit of 5-qubits can be used in the error-correction circuit of 7-qubits. By parity of reasoning, the error-correction circuit of a few quantum bits can be used in the error-correction circuit of multiple quantum bits. The quantum error-correction circuit can be simplified and the redundant qubits can be reduced using the method. It can also make the quantum cost lower.
出处 《量子电子学报》 CAS CSCD 北大核心 2010年第6期700-704,共5页 Chinese Journal of Quantum Electronics
基金 安徽省自然科学基金(090412038) 安徽省人才开发基金(2007Z028) 合肥工业大学创新实验基金(2009CXSY189)资助项目
关键词 量子光学 量子纠错 模块化 冗余量子位 quantum optics quantum error-correction modulation redundant qubits
  • 相关文献

参考文献14

  • 1Shor P W.Scheme for reducing decoherence in quantum memory[J].Phys.Rev.A,1995,52:2493-2496.
  • 2Steane A M.Multiple particles interference and quantum error correction[J].Proc.R.Soc.(London)A,1996,452:2551-2557.
  • 3Calderbank A R,Shor P W.Good quantum error-correcting codes exist[J].Phys.Rev.A,1996,54:1098-1105.
  • 4Laflamme R,Miguel C,Paz J P,et al.Perfect quantum error correcting code[J].Phys.Rev.Lett.,1996,77:198-201.
  • 5Bennett C H,Divincenzo D P,Smolin J A,et al.Mixed-state entanglement and quantum error correction[J].Phys.Rev.A,1996,54:3824-3851.
  • 6Gottesman D.Class of quantum error-correcting codes saturating the quantum Hamming bound[J].Phys.Rev.A,1996,54:1862.
  • 7Hao Chen.Some good quantum error-correcting codes from algebric geometric codes[J].IEEE Trans.Inf.Theory,2001,47:2059-2061.
  • 8Thangaraj A,McLanghlin S W.Quantum codes from cyclic codes over GF(4)[J].IEEE Trans.Inf.Theory,2001,47:2492-2495.
  • 9Li Ruihu,Li Xueliang.Quantum,codes constructed from binary cyclic codes[J].Int.J.Quant.Inf.,2004,2:265-272.
  • 10Chen Hao,Ling San,Xing Chaoping.Quantum,codes concatenated from algebraic geometric codes[J].IEEE Trans.Inf.Theory,2005,51:2915-2920.

二级参考文献21

  • 1Feynman R P. Simulating physics with computers [J]. Int. J. Theor. Phys., 1982, 21: 457-488.
  • 2Deutsch D. Quantum theory, the Church-Turing principle and the universal quantum computer [C]. Proc. of Roy. Soc. London A, 1985, 400: 97-117.
  • 3Shor P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer [J]. SIAM Journal on Computing, 1997, 26: 1484-1509.
  • 4Miller D M, Maslov D, Dueck G W. A transformation based algorithm for reversible logic synthesis [C]. Proc. of the 40th Conference on Design Automation, 2003, 318-321.
  • 5Dueck G W, Maslov D, Miller D M. Transformation-based synthesis of networks of Toffoli/Fredkin gates [C]. Proceedings of the 2003 IEEE/A CM International Conference on Computer-aided Design, 2003, 211-214.
  • 6Maslov D, Dueck G W, Miller D M. Fredkin/Toffoli templates for reversible logic synthesis [C]. ICCAD, 2003, 9-13.
  • 7Fredkin E. Toffoli T. Conservative logic [J]. Int. J. Theor. Phys., 1982, 21: 219-253.
  • 8Feynman R P. Simulating physics with computers [J]. Int. J. Theor. Phys., 1982, 2h 457-488.
  • 9Deutsch D. Quantum theory, the Church-Turing principle and the universal quantum computer [C]. Proc. of Roy. Soe. London. A, 1985, 400: 97-117.
  • 10Birnbaum J. Williams R S. Physics and the information revolution [J]. Physics Today, 2000, 53: 38-42.

共引文献8

同被引文献17

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部