期刊文献+

基于二进制传感器网络的目标运动方向估计方法

A Method for Estimating the Moving Direction of Target based on Binary Sensor Network
下载PDF
导出
摘要 介绍了方向估计二进制传感器网络(DE-BSN),提出基于统计学习解决目标运动方向估计的思路,并给出了使用线性判别分析法(LDA)和支持向量机算法(SVM)的估计方案。仿真分析了在不同传感器节点密度时上述算法的精度、和在节点出现错误的情况下算法对目标方向估计的可靠性。实验结果表明上述算法均可实现高精度的目标方向估计,并都具有一定的鲁棒性,各自的优势分别在于:LDA的计算复杂度较小,而SVM的估计误差较小。 A target direction evaluation model with binary sensor network (DE-BSN) is presented in this paper. We implemented two algorithms of statistical learning theory,namely Linear Discriminative Analysis (LDA) and Support Vector Machine(SVM). A performance study of accuracy of them with a variety of sensor node density was conducted through simulation. We further simulate the robustness of them with different error node density. The results suggest that both algorithms perform high accuracy and moderate robustness. LDA has lower computation complexity,and SVM perform low error rate.
出处 《火力与指挥控制》 CSCD 北大核心 2010年第11期188-191,共4页 Fire Control & Command Control
关键词 方向估计二进制传感器网络 统计学习 支持向量机 线性判别分析 direction estimation binary sensor network statistical learning theory support vector machine linear discriminative analysis
  • 相关文献

参考文献13

  • 1Aslam J, Butler Z,Constantin F,et al. Tracking a Moving Object with a Binary Sensor Network[C]// Proceedings of the 1st International Conference on Embedded Networked Sensor Systems, New York, NY, USA, ACM Press, 2003:150-161.
  • 2Arora A. A Line in the Sand:A Wireless Sensor Network for Target Detection, Classification, and Tracking [J]. Computer Networks, New York, NY, USA, Elsevier North-Holland, Ine,2004, 46(5):605-634.
  • 3Kim W, Mechitov K, Choi J Y, et al. On Target Tracking with Binary Proximity Sensors [C]// Proceedings of the 4th International Symposium on Information Processing in Sensor Networks, Piscataway, NJ, USA, IEEE Press, 2005, 40: 301-308.
  • 4Karras P,Mamoulis N. Detecting the Direction of Motion in a Binary Sensor Network [C]// Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing, Washington, DC, USA, IEEE Computer Society, 2006, 1 :420-427.
  • 5Shrivastava N, Mudumbai R, Madhow U, et al. Suri Target Tracking with Binary Proximity Sensors [C]//Proeeedings of the 4th International Conference on Embedded Networked Sensor Systems, New York, NY, USA,ACM Press, 2006, 251-264.
  • 6Singh J, Kumar R, Madhow U, et al. Tracking Multiple Targets using Binary Proximity Sensors [ C ]//Proceedings of the 6th International Conference on Information Processing in Sensor Networks, 2007, New York, NY, USA, ACM Press, 2007 : 529-538.
  • 7Wang Z, Bulut E, Szymanski B K. Distributed Target Tracking with Imperfect Binary Sensor Networks [C]//Proceedings of IEEE Global Communications Conference, Washington, DC, USA, IEEE Computer Society Press, 2008:1-5.
  • 8Savvides A,Han C C,Srivastava M. Dynamic Fine- grained Localization in Ad-hoc Networks of Sensors [C]//Proceedings of the 7th Annual International Conference on Mobile Computing and Networking, New York, NY, USA, ACM Press, 2001, 166- 179.
  • 9Elson J,Girod L, Estrin D. Fine-Grained Network Time; Synchronization using Reference Broadcast [C]//Proceedings of the 5th Symposium on Operating Systems Design and Implementation, New York, NY,USA, ACM Press, 2002: 147-163.
  • 10Bousquet O, Boucheron S, Lugosi G. Introduction to Statistical Learning Theory[C]//Lecture Notes in Artificial Intelligence, Springer, 2004 : 169-207.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部