期刊文献+

基于Dirichlet先验贝叶斯推理的社会化标注主题聚类 被引量:3

Topic Clustering of Social Tagging Based on Bayesian Inference of Dirichlet Prior Distribution
下载PDF
导出
摘要 本文将社会化标注系统分层分析,首层分成若干个社区,次层将主题作为主导因素,同时结合LDA(Latent Dirichlet Allocation)思想构造动态贝叶斯模型并将时间因素加入进来得到时间动态演变下的隐含社区及主题的标签集,对于为网络组织及用户有效获取提供信息资源的内在属性,提炼出社会化标注系统的有效信息。 This article analyzes the social tagging system in layers.The first layer is divided into several communities,and the second layer takes the topic as the dominant factor.In combination with the Latent Dirichlet Allocation(LDA) thinking,the article constructs the dynamic Bayesian model,and with the time factor joined in,obtains the hidden community and the topic tag set under the dynamic evolution of time.The article extracts the effective information from the social tagging system to help network organizations and users effectively obtain the inherent attributes of information resources.
出处 《情报理论与实践》 CSSCI 北大核心 2010年第12期124-128,共5页 Information Studies:Theory & Application
基金 教育部人文社会科学研究项目(项目编号:09YJC870010) 江苏省社会科学基金项目(项目编号:09TQD013) 江苏省教育厅哲学社会科学项目(项目编号:09SJB860002)的研究成果
关键词 社会化标注 隐含社区 潜在主题 主题聚类 social tagging hidden community latent topic subject clustering
  • 相关文献

参考文献14

  • 1HOFMANN T. Latent semantic models for collaborative filtering [J]. ACM Trans. on Information System, 2004 (1): 89 -115.
  • 2BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation [J]. Jornal of Machine Learning Research, 2003, 3 (3): 993-1022.
  • 3http : //sifter. org/- simon/journal/20061211, html.
  • 4ZHANG S, WANG W H, FORD J, et al. Learning from incomplete ratings using non-negative matrix factorization [C] //Proc. ofthe6th SIAM Conf. on Data Mining, Bethesda: SIAM, 2006. 549-553.
  • 5GOLDER S, HUBERMAN B. The structure of collaborative tagging systems [J]. Journal of Information Science, 2006, 32 (2) : 198-208.
  • 6SUN A, ZENG D, LI H Q, et al. Discovering trends in collaborative tagging systems [ C ]. Pacific Asian Workshop on Intelligence and Security Informatics, Berlin: Springer-Verlag, 2008 : 377-383.
  • 7HALPIN H, ROBU V, SHEPHERD H. The complex dynamics of collaborative tagging [ C ]. WWW2007 Proceeding of the 16th international World Wide Web Conference, New York : ACM Press Pages, 2007 : 211-220.
  • 8DEERWESTER S, DUMAIS S T, FURNAS G W, et al. Indexing by latent semantic analysis [ J ]. Journal of the American Society for Information Science, 1990, 41 (6) : 391-407.
  • 9HOFMANN T. Probabilistic latent semantic analysis [ C ] // Proceedings of the Fifteenth Annum Conference on Uncertainty in Artificial Intelligence, 1999: 289-296.
  • 10STEYVERS M, GRIFFITHS T. Probabilistic topic models [ M ] //LANDAUER T, et al. Latent Semantic Analysis: A Road to Meaning, [ S. l. ] : MIT Press, 2006.

二级参考文献23

  • 1朱靖波,叶娜,罗海涛.基于多元判别分析的文本分割模型[J].软件学报,2007,18(3):555-564. 被引量:15
  • 2石晶,戴国忠.基于PLSA模型的文本分割[J].计算机研究与发展,2007,44(2):242-248. 被引量:25
  • 3Bolshakov Igor A, Gelbukh A. Text segmentation into paragraphs based on local text cohesion//Vdclav Matousek, Pavel Mautner, Roman Moucek, Karel Tauser eds Proceed ings of the Text, Speech and Dialogue(TSD 2001): Lecture Notes in Artificial Intelligence, N 2166. Springer-Verlag, 2001: 158- 166
  • 4Kehagias Ath, Nicolaou A, Fragkou P, Petridis V. Text segmentation by product partition models and dynamic programming. Mathematical and Computer Modelling, 2004, 39:209- 217
  • 5Tur G, Hakkani-Tur D, Stolcke A, Shriberg E. Integrating prosodic and lexical cues for automatic topic segmentation. Computational Linguistics, 2001, 27(1): 31 -57
  • 6Levow Gina Anne. Prosody based topic segmentation for mandarin broadcast news//Proceedings of the HLT-NAACL 2004. Boston, Massachusetts, USA, 2004, 2:137 -140
  • 7Blei D, Moreno P. Topic segmentation with an aspect hidden Markov model//Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM Press, Louisiana, USA, 2001: 343-348
  • 8Thorsten Brants, Francine Chen, Ioannis Tsochantaridis. Topic-based document segmentation with probabilistic latent semantic analysis//Proceedings of the llth International Conference on Information and Knowledge Management McLean. Virginia, USA, 2002:211- 218
  • 9Blei D M, Ng A Y, Jordan M I. Latent dirichlet allocation. Journal of Machine Learning Research, 2003, (3): 993-1022
  • 10Steyvers M, Griffiths T. Probabilistic topic models//Landauer T, MeNamara D, Dennis S, Kintsch Weds. Latent Semantic Analysis: A Road to Meaning. Laurence Erlbaum, 2006

共引文献53

同被引文献42

  • 1陈树年,刘惠敏.从网络信息组织看《中国分类主题词表》[J].国家图书馆学刊,2006,15(2):21-27. 被引量:10
  • 2梁桂英,李记旭.Folksonomy初探[J].图书馆杂志,2006,25(4):46-49. 被引量:30
  • 3潘梅.用户信息空间自构建——网络书签[J].图书馆学刊,2006,28(6):123-125. 被引量:6
  • 4郝志刚.社会书签——一种网络信息资源共享的新模式[J].新世纪图书馆,2007(1):36-37. 被引量:6
  • 5Han Jiawei,Kamber Micheline,范明,孟小峰,等译.数据挖掘概念与技术[M].北京:机械工业出版社,2007:424-479.
  • 6KELLY B. Folksonomies: the sceptic's view [ EB/OL]. http: //www. ukoln, ac. uk/webfocus/events/conferences/ ili2005/talk-3/2007 -09-10.
  • 7SHIRKY C. Ontology is overrated: categories, links, and tags [ EB/OL ]. http : //www. shirky, corn/writings/ontology-over- rated, html.
  • 8RAMAGE D, HALL D, et al. Labeled LDA: a supervised topic model for credit attribution in multi-labeled corpora [ EB/ OL ]. http: //citeseerx. ist. psu. edu/viewdoc/summary? doi = 10. 1.1. 155. 3678.
  • 9MARLIN B. Modeling user rating proles for collaborative hering [ C]. SIGIR Conference on Research and Development in In- formation Retrieval, 2003.
  • 10WEI X, CROFT B. LDA-based document models for ad-hoc re- trieval [ EB/OL]. http: //www. citeulike, org/user/vlachmo- rel/article/1109893.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部