期刊文献+

基于LVQ混合网络的非特定语音识别 被引量:1

NONSPECIFIC SPEECH RECOGNITION BASED ON LVQ HYBRID NETWORK
下载PDF
导出
摘要 介绍一种新的等距离采样参数归一化方法。针对美尔倒谱系数(MFCC)和一阶、二阶美尔倒谱系数,提出了一种新的学习矢量量化(LVQ1)和改进学习矢量量化(LVQ2)结合的识别算法。仿真结果表明所提出的算法相对于只用LVQ1网络识别,可以有效改善学习效率。 A novel method of parameters normalisation,in which the signal is sampled equidistantly, is proposed in this paper. For the cepstral coefficients of MFCC, MFCC and MFCC, a new speech recognition approach based on combining the learning vector quantisation (LVQ1) with improved learning vector quantisation (LVQ2) is presented. Simulation result shows that the proposed algorithm effectively improves the learning efficiency in contrast to only using LVQ1 network recognition.
出处 《计算机应用与软件》 CSCD 2010年第12期5-7,11,共4页 Computer Applications and Software
基金 国家自然科学基金(60874002) 上海市教委创新基金重点项目(09zz158) 上海市重点学科项目(s30501) 上海市研究生创新基金(JWCXSL0902)
关键词 语音识别 参数归一化 美尔倒谱系数 学习矢量量化网络 Speech recognition Parameter normalisation Mel frequency cepstral coefficient (MFCC) Learning vector quantisation (LVQ) network
  • 相关文献

参考文献5

二级参考文献24

  • 1焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1992..
  • 2吴宗济 林茂灿.试验语音学教程[M].北京:高等教育出版社,1998..
  • 3Huang Xuedong, Acero A, Hon H W. Spoken Language Processing.Prentice Hall,2001.
  • 4Young S, Kershaw D, Odell J, et al. The HTK Book.Microsoft Corporation &CUED,2000.
  • 5Duda R O, Hart P E, Stork D G. Pattern Classification (Second Edition). A Wiley-interscience Publication, 2001.
  • 6Wendt S, Fink G A, Kummert F. Forward Masking for Increased Robustness in Automatic Speech Recognition. in: Proc. of European Conf. on Speech Communication and Technology, Aalborg,Danemark, 2001,1:615-618.
  • 7Hermansky H. Perceptual Linear Predictive(PLP) Analysis for Speech.J Acoust Soc Am ,1990,87:1738-1752.
  • 8Rabiner L R, Juang B H. Fundamentals of Speech Recognition [M]. Englewood Cliffs, New Jersey: Prentice Hall, 1993.
  • 9Ikuta H, Ishida Y, Honda T, Arai Y. Spoken Word Recognition Using LVQ Based on DP Matching [A]. Proceedings of the International Conference on Signal Processing Applications &Technology [C]. Boston. 1996, 1755-1758.
  • 10Sima M, Croitoru V, Burileanu D. Performance Analysis on Speech Recognition using Neural Networks [A]. Proceedings of the International Conference on Development and Application Systems [C]. Suceava, Romania. 1998, 259-266.

共引文献68

同被引文献23

  • 1邹小波,赵杰文.独立分量分析预处理法提高苹果糖度模型预测精度研究[J].分析化学,2006,34(9):1291-1294. 被引量:10
  • 2郁志宏,王春光,张晓芳,张莉.改进的粒子群神经网络检测种蛋成活性[J].计算机工程与设计,2007,28(2):427-429. 被引量:11
  • 3USDA, NASS. Chickens and eggs[R]. Agric. Stat. Board, Poultry, 2006, 2-4.
  • 4Das K, Evans M D. Detecting fertility of hatching eggs using machine vision I: Histogram characterization method[J]. Transactions of the ASAE, 1992, 35(4): 1335 -1340.
  • 5Das K, Evans M D. Detecting fertility of hatching eggs using machine vision II: neural network classifiers[J]. Transactions of the ASAE, 1992, 35(6): 2035-2041.
  • 6Bamelis F R, Tona K, De Baerdemaeker J G, et al. Detection of early embryonic development in chicken eggs using visible light transmission[J]. British Poultry Sicece, 2002, 43(2): 204-209.
  • 7Kemps B, De Ketelaere B, Bamelis F, et al. Vibration analysis on incubating eggs and its relation to embryonic development[J]. Biotechnology Progress, 2003, 19(3): 1022- 1027.
  • 8Romanoff A L. The avian embryo[M].New York: The Macmillan Company, 1960.
  • 9Lawrence K C, Smith D P, Windham W R, et al. Egg embryo development detection with hyperspectral imaging[J]. International Journal of Poultry Science, 2006, 5(10): 964-968.
  • 10Park B, Lawrence K C, Windham W R, et al. Hyperspectral imaging for detecting fecal and Ingest a contamination on poultry carcass[J]. Transactions of ASAE, 2002, 45(6): 2017-2022.

引证文献1

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部