摘要
针对如何选定PCA特征空间维数的问题,提出了一种基于改进混沌遗传算法的特征选择方法。改进的混沌遗传算法采用两种不同规则的混沌映射,维持了种群的多样性,增强了算法的全局搜索能力。利用改进的混沌遗传算法对PCA变换后的特征向量进行选择,可以快速搜索到最有利于分类的特征子空间。仿真实验表明,该方法不但降低了特征空间的维数,而且获得了比采用其它方法更好的识别性能。
Aiming at the problem of how to determine the dimension of the eigenvectors in Principal Component Analysis ( PCA) ,this paper proposes a novel feature selection method based on an improved chaos genetic algorithm( ICGA) . The algorithm uses two kinds of chaotic mappings in different ways,which maintains the diversity of population and enhances the global searching ability. Then ICGA is used for feature ( eigenvector) selection after the transformation of PCA,which can quickly find out feature subspace that is most beneficial to classification. The experiment results indicate that the proposed method not only reduces the dimensions of face feature space,but also achieves higher recognition performance than other methods.
出处
《计算机应用与软件》
CSCD
2010年第12期108-111,共4页
Computer Applications and Software
基金
甘肃省自然科学基金项目(0803RJZA025)
关键词
特征选择
人脸识别
主成分分析
混沌遗传算法
Feature selection Face recognition Principal component analysis Chaos genetic algorithm