期刊文献+

基于改进混沌遗传算法的人脸特征选择 被引量:2

FEATURE SELECTION OF FACE RECOGNITION BASED ON IMPROVED CHAOS GENETIC ALGORITHM
下载PDF
导出
摘要 针对如何选定PCA特征空间维数的问题,提出了一种基于改进混沌遗传算法的特征选择方法。改进的混沌遗传算法采用两种不同规则的混沌映射,维持了种群的多样性,增强了算法的全局搜索能力。利用改进的混沌遗传算法对PCA变换后的特征向量进行选择,可以快速搜索到最有利于分类的特征子空间。仿真实验表明,该方法不但降低了特征空间的维数,而且获得了比采用其它方法更好的识别性能。 Aiming at the problem of how to determine the dimension of the eigenvectors in Principal Component Analysis ( PCA) ,this paper proposes a novel feature selection method based on an improved chaos genetic algorithm( ICGA) . The algorithm uses two kinds of chaotic mappings in different ways,which maintains the diversity of population and enhances the global searching ability. Then ICGA is used for feature ( eigenvector) selection after the transformation of PCA,which can quickly find out feature subspace that is most beneficial to classification. The experiment results indicate that the proposed method not only reduces the dimensions of face feature space,but also achieves higher recognition performance than other methods.
出处 《计算机应用与软件》 CSCD 2010年第12期108-111,共4页 Computer Applications and Software
基金 甘肃省自然科学基金项目(0803RJZA025)
关键词 特征选择 人脸识别 主成分分析 混沌遗传算法 Feature selection Face recognition Principal component analysis Chaos genetic algorithm
  • 相关文献

参考文献10

二级参考文献44

共引文献278

同被引文献15

  • 1边肇祺,张学工.模式识别[M].北京:清华大学出版社,2007.
  • 2Viola P,Jones M.Rapid object detection using a boosted cascade o f simple features[C]//Anne J,Thom as B.Proc of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Los A lamitos:lEEE.Computer Society,2001:511-518.
  • 3Zhang Zhen-qiu,Zhu Long,Li S Z,et al.Realtim e multi-view face detection[C]//Williams A D.Proceedings of 5th IEEE International Conference on Automatic Face and Gesture Recognition.Los A lamitos:IEEE Computer Society,2002:142-147.
  • 4FaselIan,Fortenberry B,Movellan J.A generative frame-work for real time object detection and classification[J].Computer Vision and Image Understanding,2005,98(1):182-210.
  • 5Li S Z,Zhang Zhen-qiu.Floatboost learning and statistical face detection[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2004,26(9):1112-1123.
  • 6Viola Paul,Jones Michael J.Robust real time object detection[J].International Journal of Computer Vision,2004,57 (2):137-154.
  • 7Freund Y,Schapire R.A decision-theoretic generalization of online learning and an application to boosting[J].Journal of Computer and System Sciences,1997,55 (1):119-139.
  • 8钱力思,陈坚.基于AdaBoost人脸检测算法的研究[D].重庆:西南大学,2011.
  • 9洪田荣,柏正尧.基于AdaBoost快速训练算法的人脸检测的研究与实现[D].昆明:云南大学,2010.
  • 10王智文,刘美珍,黄秋凤,蔡启先.基于改进BP神经网络车型识别的研究[J].广西工学院学报,2008,19(3):23-26. 被引量:8

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部