期刊文献+

数据归并与连续自变量虚拟化

Censored Data and Dummy Continuous Regressors
下载PDF
导出
摘要 本文基于数据双侧归并的一般化设定探讨了回归方程中包含归并数据时的参数估计问题。对于某些变量存在数据归并的线性模型,由于样本似然函数非常复杂,普通的一阶优化条件没有解析解,Newton-Raphson迭代也难以收敛。我们基于EM算法来计算参数的ML估计,推导了对应的参数迭代方程,给出了参数的一个闭式解。特别是,当数据双侧归并比例达到100%时,被归并的连续变量退化为虚拟变量的形式,对此,我们建议使用AIC或SC来识别回归方程中的虚拟变量是否为结构变化抑或是变量归并。 Since the log-likelihood function of sample is very complex for linear models with censored variables,the first order conditions of optimization has not analytical solutions, while Newton-Raphson iteration is too hard to convergent. This paper focuses on the estimation for linear models with two-side censored variables. We calculate the ML estimation via the EM algorithm,and derive its iteration equations,which gives a closed-form solution for parameters. Especially,the continu- ously censored variables degenerate into dummy variables when the censoring ratio of data arrive 100% ,for this situation,we advise to identify whether the dummy variables in regression is structural change or censoring by AIC or SC criteria.
出处 《统计研究》 CSSCI 北大核心 2010年第12期86-91,共6页 Statistical Research
关键词 因变量归并模型 自变量归并模型 EM算法 连续自变量虚拟化 Censored Dependent Variables Model Censored Regressors Model EM Algorithm Dummy Continuous Regressors
  • 相关文献

参考文献15

  • 1Aitkin, M. , A Note on the Regression Analysis of Censored Data [J]. Technometries, 23(2), 1981, 161-163.
  • 2Dempster, A. P., N. M. Laird and D. B. Rubin, Maximum Likelihood from Incomplete Data via the EM algorithm[ J ]. Journal of the Royal Statistical Society. Series B (Methodological), 39 (1), 1977, 1 -38.
  • 3Greene, W. H. , Econometrics Analysis[ M]. 6th Edition, Prentice Hall, 2008.
  • 4Heller, G. and J. S. Simonoff, A Comparison of Estimators for Regression with a Censored Response Variable[ J]. Biometrika, 77 (3), 1990, 515-535.
  • 5Huang, C. J., Estimation of Stochastic Frontier Production Function and Technical Inefficiency via the EM Algorithm [J ]. Southern Economic Journal, 50 (3) , 1984, 847 - 856.
  • 6Little, R. J. A. , Regression with Missing X's: a Review [ J]. Journal of the American Statistical Association, 87, 1992, 1227 - 1237.
  • 7Manski, C. F. and E. Tamer, Infernce on Regressions with Interval Data on a Rgressor or Outcome [ J ]. Econometrica, 70, 2002, 519-565.
  • 8Ng, H. K. T., P. S. Chan and N. Balakrishnan, Estimation of Parameters from Progressively Censored Data Using EM Algorithm [J]. Computational Statistics & Data Analysis, 39, 2002, 371 - 386.
  • 9Olsen, R. J. , Note on the Uniqueness of the Maximum Likelihood Estimator for the Tobit Model[ J ]. Econometfica, 46, 1978,.1211 - 1215.
  • 10Rigobon, R. and T. M. Stoker, Bias from Censored Regressors [C]. Working Paper, 2005.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部