期刊文献+

基于LS-SVM的交通流组合预测模型

Traffic Flow Combining Forecast Model Based on Least Squares Support Vector Machine
下载PDF
导出
摘要 智能交通系统是目前世界上公认的解决城市交通拥堵问题的最佳措施,而实时准确地交通流量预测则是实现智能交通系统和智能交通诱导控制的重要依据.针对城市交通"智能运输系统"和交通流的特性,在多元线性回归、支持向量机和改进的BP神经网络等三种预测模型的基础上,提出了基于最小二乘支持向量机方法的交通流组合预测模型.实验预测结果表明该组合预测模型具有较高的预测精度,为交通流量提供了一个更好的预测模型. At present,intelligent transportation system is considered as the best practice to solve the problem of urban traffic congestion.Timely and accurate forecast of traffic flow is an important basis to achieve intelligent transportation system and intelligent transportation guidance and control.According to the city intelligent transportation system and the characteristics of traffic flow,the combining forecast model is set up based on least squares support vector machine after support vector machine,back propagation neural network modified by support vector machines and multiple linear regression which are applied to establish the model of traffic flow prediction respectively.Experiments show better effect and higher precision of forecast by the combining model of LS-SVM and this model is a better traffic flow forecast one.
作者 张朝元 陈丽
出处 《湖南工程学院学报(自然科学版)》 2010年第4期56-58,共3页 Journal of Hunan Institute of Engineering(Natural Science Edition)
基金 大理学院科研基金资助项目(2005X23)
关键词 多元线性回归 支持向量机 BP神经网络 LS-SVM 交通流量 组合预测 multiple linear regression support vector machines back propagation neural network least squares support vector machine traffic flow combining forecast
  • 相关文献

参考文献5

二级参考文献11

  • 1王郁,刘豹.递归等权组合预测[J].预测,1988,7(5):19-20. 被引量:12
  • 2张国平.B—G组合预测理论剖析[J].预测,1988,7(5):22-25. 被引量:27
  • 3彭慧中.关于加权平均预测的条件[J].预测,1986,5(5):21-22. 被引量:2
  • 4张朝元,胡光华,徐天泽,殷英.支持向量机改进的神经网络的函数逼近[J].昆明理工大学学报(理工版),2004,29(6):148-152. 被引量:12
  • 5Amari S, Wu S. Improving support vector machine classifiers by modifying kernel function[J]. Neurocomputing.,1999,(12): 783-789.
  • 6Gao J B, Gunn S R, Harris R J. Mean field method for the support vector machine regression[J]. Neurocomputing.,2003,(50): 391-405.
  • 7Joachims T. Text categorization with support vector machine: Learning with many relevant feature[A]. Proceedings of the 10th European Conference on Machine: Learning[C]. Berlin: Springer, 1998,137-142.
  • 8Girori F. An equivalence between sparse approximation and support vector machines[J]. Neurocomputing, 1998,10(6): 1455-1480.
  • 9Francis E H Tay, Cao G J. Modified support vector machines in financial time series forecasting[J]. Neurocomputing,2002,(48): 847-861.
  • 10VapnikVN.统计学习理论的本质[M].北京:清华大学出版社,2000..

共引文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部