期刊文献+

调理污泥在剪切测试过程中的絮体与聚集体之间的转化研究 被引量:2

Study on transformation between flocs and aggregates in conditioned anaerobic digested sludge(ADS) suspensions during a shear test
原文传递
导出
摘要 通过分析Floccky流变测试过程中不同持续剪切时间下调理污泥絮体的流变、几何和物理特征的变化,探讨了上述过程中絮体与聚集体之间的转化。结果表明,在zetag7557阳离子有机高分子絮凝剂的最佳调理投药量下,调理污泥体系的弹性网络结构的强度和耐剪切力达到最大。当絮凝剂投加到污泥悬浊体系中,大尺寸的聚集体立即出现,而且在一定范围内,随着持续剪切时间的延长,这些聚集体继续生长,此后,随着持续剪切进行,这些聚集体逐渐变成小甚至成为越来越小的絮体。在上述过程中,Floccky流变曲线上的扭矩值也呈现类似的变化趋势;弹性网络结构强度的极值出现在形成大尺寸聚集体的调理污泥体系中,但形成最大的聚集体或平均直径的调理污泥体系并不能保证弹性网络结构强度达到极值,而且调理污泥絮体分形维数的极值与Floccky流变曲线上特征峰的极值并不重合。此外,残余在悬浊体系中的zet-ag7557絮凝剂可以中和部分因调理污泥絮体剪切破碎后新出现的表面负电荷。 This study presented the variations in rheological,geometric and physical characteristics of conditioned anaerobic digested sludge(ADS) to analyze the transformation between flocs and aggregates during a rotational test with a Floccky rheometer.The results revealed that both elastic network strength and resistance to shear reached their maximum values at the optimum dosage of polymer zetag7557 on the basis of the area under torque-time rheograms of ADS.Large aggregates were observed as soon as the optimum polymer dosage was injected into the ADS suspensions,and they continued to grow as the shear duration was prolonged.Afterwards,these aggregates broke into smaller ones or were directly transformed into smaller and smaller flocs with the extension of imposed shear.During the above process,the corresponding torque values in the rheogram also showed similar behavior to the variations of conditioned ADS biosolids.The strongest elastic network formed in conditioned ADS suspensions in which large aggregates were generated,while the ADS suspension with the largest single aggregate or the highest average size of aggregates/flocs did not assure the strongest elastic network.The climax of fractal dimensions for conditioned ADS flocs were not coincident with that of the peak height in the rheograms for these ADS suspensions.In addition,residual polymers after absorption onto the surface of ADS biosolids could neutralize some of the negative surface in these biosolids exposed by shear application in the Floccky test.
出处 《环境工程学报》 CAS CSCD 北大核心 2010年第12期2662-2668,共7页 Chinese Journal of Environmental Engineering
基金 中央高校专项基金项目(BLJC200902 TD2010-5) 国家自然科学基金资助项目(20977008 51078035) 863探索项目课题(2007AA06Z301) 水体污染控制与治理科技重大专项课题(2008ZX07422-002-004) 北京市科技新星A(2006)
关键词 厌氧消化污泥 调理 絮体/聚集体 扭矩-时间流变图 分形 转化 anaerobic digested sludge(ADS) conditioning flocs/aggregates torque-time rheogram fractal transformation
  • 相关文献

参考文献2

二级参考文献7

共引文献46

同被引文献19

  • 1Steinle D E,Reinhard M. Nanofiltration for trace organic contaminant removal:Structure,solution,and membrane fouling effects on the rejection of perfluoro chemicals[J].Environmental Science and Technology,2008,(03):5292-5297.
  • 2Wu M,Sun D D. Characterization and reduction of membrane fouling during nanofiltration of semiconductor indium phosphide (InP) wastewater[J].Journal of Membrane Science,2005,(1-2):135-144.doi:10.1016/j.memsci.2005.03.020.
  • 3Wu M,Sun D D,Tay J H. Effect of operating variables on rejection of indium using nanofiltration membranes[J].Journal of Membrane Science,2004,(1-2):105-111.doi:10.1016/j.memsci.2004.04.017.
  • 4Kabsch K. Effect of Al coagulant type on natural organic matter removal efficiency in coagulation/uhrafiltration process[J].Desalination,2005,(1-3):327-333.
  • 5Tang C Y,Kwon Y N,Leckie J O. Characterization of humic acid fouled reverse osmosis and nano? ltration membranes by transmission electron microscopy and streaming potential measurements[J].Environmental Science and Technology,2007,(03):942-949.
  • 6Kimura K,Hane Y,Watanabe Y. Effect of pre-coagulation on mitigatingirre-versible fouling during ultrafiltration of a surface water[J].Water Science and Technology,2005,(6-7):93-100.
  • 7Listiarini K,Sun D D,Leckie J O. Organic fouling of nanofiltration membranes:Evaluating the effects of humic acid,calcium,alum coagulant and their combinations on the specific cake resistance[J].Journal of Membrane Science,2009,(1-2):56-62.
  • 8TangC Y,Fu Q S,CriddleC S. Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater[J].Environmental Science and Technology,2007,(06):2008-2014.
  • 9Tang C Y,Kwon Y N,Leckie J O. Characterization of humic acid fouled reverse osmosis and nanofiltration membranes by transmission electron microscopy and streaming potential measurements[J].Environmental Science and Technology,2007,(1-2):942-949.
  • 10Schippers J C,Verdouw J. The modified fouling index,a method of determining the fouling characteristics of water[J].Desalination,1980,(03):137-148.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部