期刊文献+

未知环境下一种移动机器人实时最优路径规划方法研究 被引量:4

A Real-Time Optimized Approach to Path Planning for Mobile Robot in Unknown Environment
下载PDF
导出
摘要 针对未知环境下移动机器人的安全路径规划问题,提出一种基于改进神经网络和模拟退火算法相结合的方法.神经网络表示机器人的工作空间,通过BP反向算法学习外部环境结构特征和信息表示,进而优化障碍物神经网络的连接权值,利用模拟退火算法搜寻代价函数的负梯度方向,采用组合探测器来减小模拟退火算法搜索区域和应用后退策略及设置虚拟目标点的方法处理局部路径规划中出现的陷阱问题.仿真验证此方法有效性和正确性. For safe path planning of mobile robot in unknown environment,a method is proposed based on improved neural network and simulated annealing algorithm.Neural network is built to describe the working space of the mobile robot,which connection weights are optimized by the back propagation(BP) learning algorithm to study the structural features and information representation of the environment.Simulated annealing(SA) algorithm by using the combination of detectors to reduce the search area is adopted to get the best negative gradient direction of cost function.A strategy of back strategy and "virtual target" is introduced to deal with the problem of local minimum,which often occurs in local path planning.The result of the simulation experiment proves the effectiveness and feasibility of the proposed approach.
出处 《电子学报》 EI CAS CSCD 北大核心 2010年第11期2535-2539,共5页 Acta Electronica Sinica
基金 机器人技术与系统国家重点实验室开放项目 北京化工大学创新基金(No.XS0936)
关键词 移动机器人 路经规划 BP神经网络 模拟退化算法 mobile robot path planning BP neural network simulated annealing algorithm
  • 相关文献

参考文献5

二级参考文献24

  • 1张华,李祖枢,吴健,胡天链,陈胡明.竞赛机器人中的巡线技术及其实现[J].重庆大学学报(自然科学版),2005,28(10):75-78. 被引量:7
  • 2Hu Y,Yang S X,et al.A knowledge based genetic algorithm for path planning of a mobile robot[A].Proc of the 2004 IEEE Intl.Conference on Robotics & Automation[C].New Orieans,2004.4350-4355.
  • 3Tu J,Yang S X.Genetic algorithm based path planning for a mobile robot[A].Proc of IEEE Intl Conf on Robotics andAutomation[C].Taipei,Taiwan,September 2003.14-19.
  • 4Lozano-Pérez T.Spatial planning:a configuration approach[J].IEEE Trans on Computer,1983,32 (2):108-120.
  • 5Sharir M.Algorithmic motion planning in robotics[J].Computer,1989,22(3):9-20.
  • 6Khosla P,Volpe R.Superquadric artificial potentials for obstacle avoidance and approach[A].Proc IEEE Intl Conf on Robotics and Automation[C].Philadelphia,PA,1988.1778-1784.
  • 7Deng X,Mirzaian A.Competitive robot mapping with homogeneous markers[J].IEEE Trans on Robotics and Automation,1996,12(4):532-542.
  • 8Rimon E,Koditschek D E.Exact robot navigation using artificial potential fields[J].IEEE Trans on Robotics and Automation,1992,8(5):501-518.
  • 9Ashiru I,Czarnecki C,Routen T.Characteristics of a genetic based approach to path planning for mobile robots[J].Journal of Network and Computer Applications,1996,19(2):149-169.
  • 10Yang S X,Meng M.Real-time collision-free path planning of robot manipulators using neural network approaches[J].Autonomous Robots,2000,9(1):27-39.

共引文献48

同被引文献41

  • 1高庆吉,于咏生,胡丹丹.基于改进A*算法的可行性路径搜索及优化[J].中国民航学院学报,2005,23(4):42-45. 被引量:15
  • 2金雷泽,杜振军,贾凯.基于势场法的移动机器人路径规划仿真研究[J].计算机工程与应用,2007,43(24):226-229. 被引量:14
  • 3Oberkampf W L, Helton J C, Joslyn C A, et al. Challenge problems : Uncertainty in system response given uncertain parameters[ J]. Reliability Engineering and System Safety, 2004,85(1-3) :11-19.
  • 4Zaman K, Rangavajhala S, McDonald M P, et al. A prob- abilistie approach for representation of interval uncertainty [J]. Reliability Engineering and System Safety, 2011,96 (1) :117-130.
  • 5Zhao Z H, Han X, Jiang C, et al. A nonlinear interval- based optimization method with local-densifying approxima- tion teehnique[J]. Structure and Multidisciplinary Optimi- zation, 2010,42(4) :559-573.
  • 6Majumder L, Rao S S. Interval-based optimization of air- craft wings under landing loads [ J ]. Computers and Stnlc- tures, 2009,87 ( 3-4 ) : 225-235.
  • 7Limbourg P, Aponte D E S. An optimization algorithm for imprecise multi-objective problem functions [ C ]// Pro- ceedings of the 2005 IEEE Congress on Evolutionary Com- putation. 2005,1:459-466.
  • 8Gong D W, Qin N N, Sun X Y. Evolutionary algorithms for multi-objective optimization problems with interval pa- rameters[C]// Proceedings of the 5th IEEE International Conference on Bio-Inspired Computing: Theories and Ap- plications. 2010:411-420.
  • 9耿娜.特定环境下机器人路径规划[D].徐州:中国矿业大学,2011.
  • 10Liu S R, Mao L B, Yu J S. Path planning based on ant colony algorithm and distributed local navigation for nndti- robot systems [ C ]//Proceedings of the 2006 IEEE Interna- tional Conference on Mechatronics and Automation. 2006: 1733-1738.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部