期刊文献+

基于稀疏流形学习的SAR图像识别 被引量:7

SAR Image Recognition Based on Sparse Manifold Learning
下载PDF
导出
摘要 稀疏性是SAR图像的一个显著特征,而且SAR图像存储模式的维数很高,要对其进行识别存在很多困难.为了解决上述问题,提出一种基于稀疏流形学习的SAR图像识别方法.首先进行图像增强,以保持目标的边缘结构信息;其次利用样本协方差矩阵的谱范数确定能得出数据低维流形的最少数据点数;再利用拉普拉斯特征值映射(LE)的核化方法计算样本外点的低维嵌入;最后采用KNR分类器进行识别.MSTAR仿真实验证明了其可行性,并与其它识别方法进行比较,验证了其优越性. Sparsity is a remarkable character of Synthetic Aperture Radar(SAR) image and its dimension of storage is high,so the recognition of SAR image is very difficult.In order to solve the problem,an algorithm of SAR image recognition based on sparse manifold learning is proposed.Firstly the image was enhanced in order to preserve the edge information of the objective;The second step was determining the least number of points which can get the integrate low-dimensional manifold by the spectrum of the sample covariance matrix;then utilized kernel extending of Laplacian Embedding(LE) to get the low-dimensional coordinates of the out-of-sample,at last SAR images were recognized by Kernel-based Nonlinear Representor(KNR).Experimental results on MSTAR show its feasibility and superiority by comparing with other methods.
出处 《电子学报》 EI CAS CSCD 北大核心 2010年第11期2540-2544,共5页 Acta Electronica Sinica
基金 国家863高技术研究发展计划(No.2007AA701206)
关键词 合成孔径雷达 稀疏流形学习 图像识别 样本外点 低维嵌入 synthetic aperture radar sparse manifold learning image recognition out-of-sample low-dimensional embedding
  • 相关文献

参考文献15

  • 1Oliver C,Quegan S.Understanding Synthetic Aperture Radar Images[M].Norwood:Artech House,1998.23-34.
  • 2焦李成,王爽,侯彪.SAR图像理解与解译研究进展[J].电子学报,2005,33(B12):2423-2434. 被引量:6
  • 3王光新,王正明,王卫威.基于Cauchy稀疏分布的SAR图像超分辨算法[J].宇航学报,2008,29(1):299-303. 被引量:4
  • 4Brand M.Charting a manifold.Advances in Neural Information Processing Systems 15.Vancouver,Canada,2003.985-922.
  • 5Kokiopoulou E,Saad Y.Orthogonal neighborhood preserving projections:A projection-based dimensionality reduction technique[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(12):2143-2156.
  • 6Muller K R,Mika S,Ratsch G,etal.An introduction to kernel-based learning algorithms[J].IEEE Transactions on Neural Networks,2001,12(2):181-201.
  • 7Vasilescu,M A O,Terzopoulos,D.Tensor textures:multilinear image-based rendering[J].Acm Transactions on Graphics,2004,23(3):336-342.
  • 8乔明,王新楼,邹谋炎.一种规整化的各向异性扩散相干斑抑制算法[J].中国科学院研究生院学报,2005,22(1):24-29. 被引量:5
  • 9张良培,王毅,李平湘.基于各向异性扩散的SAR图像斑点噪声滤波算法[J].电子学报,2006,34(12):2250-2254. 被引量:14
  • 10V Berisha,N Shah,D Waagen.Sparse manifold learning with applications to SAR image classification[J].ICASSP,2007,3(8):1089-1092.

二级参考文献126

共引文献33

同被引文献164

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部