期刊文献+

三角李拟双代数胚的扭关系 被引量:1

Twisting Relation on Triangular Lie Quasi-Bialgbroid
下载PDF
导出
摘要 李拟双代数胚是李双代数胚的推广,它与扭泊松结构有密切的关系.本文证明了扭关系在李拟双代数胚范围内是等价关系,并给出了恰当和三角李拟双代数胚的定义,研究了它和YangBaxter方程的关系. Lie-quasi bialgebroid is the generalization of Lie bialgebroid.In this paper,the twisting relation is proved to be an equivalent relation with respect to Lie-quasi bialgebroid.Lastly,the notion of triangular Lie-quasi bialgebroid is introduced,and the relationship between triangular Lie-quasi bialgebroid and YangBaxter equation is studied.
作者 尹彦彬 刘玲
出处 《河南大学学报(自然科学版)》 CAS 北大核心 2010年第6期551-555,共5页 Journal of Henan University:Natural Science
基金 河南省教育厅自然科学基金资助项目(2010B110005) 校内科研基金自然科学重点项目(2009ZZZD001)
关键词 源双代数胚 李拟双代数胚 Courant代数胚 Courant大括号 proto-bialgebroid Lie-quasi bialgebroid Courant algebroid Courant bracket
  • 相关文献

参考文献5

  • 1Roytenberg D. On the structure of graded symplectic supermanifolds and eourant algebroids[J]. Quantization, Poisson brackets and beyond, 2001,315:169- 185.
  • 2Bangoura M, Kosmann-Schwarach Y. The double of a Jacobian quasi-bialgbra[J]. Lett. Math. phys. , 1993(28) :13-29.
  • 3Kosmann-Schwarzbach. Y. Quasi,twisted,and all that... in Poisson geometry and Lie algebroid theory[J]. The breadth of symplectic and poisson geometry, 2005,232:363-389.
  • 4YIN Yanbin HE Longguang.Dirac structures on protobialgebroids[J].Science China Mathematics,2006,49(10):1341-1352. 被引量:2
  • 5LIR Z J. Some remarks on dirac structures and poisson reduetions[J]. Banach Center Publ,2000,51: 165-173.

二级参考文献14

  • 1[1]Varadarajan V S.Series:Courant Lecture Notes,Supersymmetry for Mathematicians:An Introduction.American Mathematical Society,2004,11
  • 2[2]Roytenberg D.Quasi-Lie bialgebroids and twisted Poisson manifolds.Lett Math Phys,2002,61:123-137
  • 3[3]Roytenberg D.On the structure of graded symplectic supermanifolds and Courant algebroids.In:Voronv T,ed.Quantization,Poisson Brackets and Beyond(Manchester,2001),Contemp Math,2002,315:169-185
  • 4[4]Kosmann-Schwarzbach Y.Quasi,twisted,and all that...in Poisson geometry and Lie algebroid theory.Progress in Mathematics,2005,232:363-389
  • 5[5]Liu Z-J,Weinstein A,Xu P.Beyond Lie algebroids:Dirac structures and Poisson homogeneous spaces.Common Math Phys,1998,192:121-144
  • 6[6]Kosmann-Schwarzbach Y.Derived brackets.Lett Math Phys,2004,69:61-87
  • 7[7]Kosmann-Schwarzbach Y.Jacobian quasi-bialgebra.In:Gotay M,Marsden J E,Moncrief V,eds.Mathematical Aspects of Classical Field Theory,Contemp Math,1992,132:459-489
  • 8[8](S)evera P,Weinstein A.Poisson geometry with a 3 form background.Prog Theor Phys Suppl,2001,144:145-154
  • 9[9]Bangoura M,Kosmann-Schwarach Y.The double of a Jacobian quasi-bialgbra.Lett Math Phys,1993,28:13-29
  • 10[10]Liu Z-J.Some Remarks on Dirac Structures and Poisson Reductions.Banach Center Publ,2000,51:165-173

共引文献1

同被引文献13

  • 1HartwigJ, Larsson D, Silvestrov S. Deformations of Lie algebras using (J -derivations[J].Journal of Algebra, 2006, 295: 314-361.
  • 2Makhlouf A, Silvestrov S. Hom-algebra structures[J].Journal of Generalized Lie Theory and Applications, 2008, 2 (2) : 51-64.
  • 3Chen y, Wang y, Zhang L. The construction of Hom-Lie bialgebras[J].Journal of Lie Theory, 2010, 20: 767-783.
  • 4Sheng Y. Representations of Hom-Lie algebras[J]. Algebras and Representation Theory, 2012, 15: 1081 -1098.
  • 5Sheng v . Chen D. Hom-Lie 2-algehras[J].Journal of Algebra, 2013, 376: 174-195.
  • 6Larsson D, Silvestrov S. Quasi-Horn-Lie algebras, central extensions and 2-cocycle-like identities[J].Journal of Algebra, 2005, 288: 321 - 344.
  • 7Makhlouf A, Silvestrov S. Notes on formal deformations of Hom-associative and Hom-Lie algcbras[J]. Forum Mathernati?cum, 2010, 22(4): 715-739.
  • 8Laurent-Gengoux C, TelesJ. Hom-Lie algebroids[J].Journal of Geometry and Physics, 2013, 68: 69-75.
  • 9Kosmann-Schwarzbach Y. Nijenhuis structures on courant algebroids[J]. Bulletin of the Brazilian Mathematical, 2011, 42 (4): 625-649.
  • 10Caseiro R, De Nicola A, Nunes da CostaJ M. OnJacobi quasiNijenhuis algebroids and courant-Jacobi algebroid mor?phisms[J].Journal of Geometry and Physics, 2010, 60(6-8) :951-961.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部