期刊文献+

离子束作用下的光学表面粗糙度演变研究 被引量:10

Optical surface roughness in ion beam process
下载PDF
导出
摘要 为了获得超光滑光学表面,介绍了离子束作用下改善表面粗糙度的抛光方法,并通过相关的实验进行了验证。光学材料是典型的硬脆材料,在加工过程中的表面粗糙度要经历复杂的演变过程。离子束加工作为光学镜面加工中的最后一道工序,如果在修正面形的同时,能够有效地改善表面粗糙度,那么离子束加工的性能就可以得到更好的延伸。分析了离子束作用下的粗糙度演变机理,在此基础上提出了倾斜入射抛光和牺牲层抛光技术2种改善表面粗糙度的方法,并使用原子力显微镜进行了测量。实验结果表明:以45°倾斜入射抛光熔石英样件,其粗糙度由初始的0.67 nm RMS减小到0.38 nm RMS;涂上牺牲层的材料表面粗糙度由0.81 nm RMS减小到0.28 nm RMS,倾斜入射抛光和牺牲层抛光技术能够有效地改善表面粗糙度。 In order to obtain ultra-smooth optical surface in ion beam process,the process methods for reducing surface roughness are introduced and validated by experiments.Optical material is typical hard and brittle material,whose surface roughness evolves complicated variation in process.As the final precision machining,ion beam figuring can correct figure error and improve optical surface roughness.Based on the evolvement mechanism of surface roughness in ion beam process,the methods of obliquely incidence figuring and coating sacrificial layer technology were investigated.The surface roughness was measured by atomic force microscope(AFM).Experimental results indicate that the surface roughness was reduced from 0.67 nm RMS to 0.38 nm RMS when figuring fused silica sample was processed at oblique incidence angle of 45°.Similarly,the surface roughness was reduced from 0.81 nm RMS to 0.28 nm RMS after removing sacrificial layer.The methods of obliquely incidence figuring and sacrificial layer figuring technology can effectively improve surface roughness in ion beam figuring.
出处 《应用光学》 CAS CSCD 北大核心 2010年第6期1041-1045,共5页 Journal of Applied Optics
基金 国家自然科学基金(50775215 50975281) 中国博士后基金特别资助课题(200902664)
关键词 离子束抛光 光学表面粗糙度 倾斜入射抛光 牺牲层抛光技术 ion beam figuring(IBF) optical surface roughness obliquely incidence figuring sacrificial layer figuring technology
  • 相关文献

参考文献10

  • 1SAVVIDES N.Surface microroughness of ion-beam etched optical surfaces[J].Journal of Applied Physics,2005,97(5): 053517.1-053517.7.
  • 2JIAO Chang-jun,LI Sheng-yi,XIE Xu-hui.Algo-rithm for ion beam figuring of low-gradient mirrors[J].Applied Optics,2009,48(21):4090-4096.
  • 3DRUEDING T W,BIFANO T G,FAWCETT S C.Contouring algorithm for ion figuring[J].Precision Engineering,1995,17(1):10-21.
  • 4ALLEN L N,ROMIG H W.Demonstration of an ion figuring process[J].SPIE,1990,1333:22-33.
  • 5INABA T,KURASHIMA Y,PAHLOVY S A,et al.Low energy ion beam machining of ULE substrates: evaluation of surface roughness[J].Microelectronic Engineering,2009,86(4-6):497-499.
  • 6GAILLY P,COLLETTE J P,JAMAR C,et al.Roughness evolution of some X-UV reflective materials induced by low energy ion milling[J].Nuclear Instruments and Methods in Physics Research Section B,2004,216:201-212.
  • 7FROST F,FECHNER R,ZIBERI B,et al.Large area smoothing of optical surfaces by low-energy ion beams[J].Thin Solid Films,2004,459(12):100-105.
  • 8BRADLEY R M,HARPER J M E.Theory of ripple topography induced by ion bombardment[J].Journal of Vacuum Science & Technology A,1988,6(4):2390-2395.
  • 9MAKEEV M A,CUERNO R,BARABASI A L.Morphology of ion-sputtered surfaces[J].Nuclear Instruments and Methods in Physics Research Section B,2002,197(3-4):185-227.
  • 10DAI Yi-fan,LIAO Wen-in,CHEN Shan-yong,et al.Theoretical analysis and experimental study of material of material removal characteristics in ion beam figuring process[C].Dalian: The 5th SPIE International Symposium on Advanced Optical Manufacturing and Testing Technologies,2010.

同被引文献152

引证文献10

二级引证文献126

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部