期刊文献+

一种基于Max-Min方法的带模糊约束线性规划的解法

Solution to Fuzzy Linear Programming with Elastic Constrains and Its Application
下载PDF
导出
摘要 带模糊约束线性规划的关键是如何将其转化为经典的线性规划加以求解,文中基于Werners提出的Max-Min方法,通过对目标函数及约束条件的隶属函数进行加权,建立了一个新的(LP)模型,该方法从理论上证明了其解的模糊有效性,并用实例证明新模型下的解更有效. This artical proposed a new solution to a fuzzy- linear programming with elastic constrains, which is improved based on the Max-Min solution. A new LP model is established through a general consideration of the membership function of the goal and constrains. The result of the new method is fuzzy efficient in theory. Moreover, an example is given to illustrate the solution which is efficient under the new model.
作者 赵娟 刘琼荪
出处 《湘南学院学报》 2010年第5期28-31,64,共5页 Journal of Xiangnan University
关键词 模糊约束 模糊线性规划 Max—Min方法 模糊有效 fuzzy constraints fuzzy linear programming Max-Min solution fuzzy efficient
  • 相关文献

参考文献7

  • 1H-J Zimmermam.Fuzzy programming and linear programming with several objective function[J].Fuzzy Sets and Systems,1978:45-55.
  • 2H R Maleki,M Tata,M Mashinchi.Linear programming with fuzzy variables[J].Fuzzy Sets and Systems,2000,109:21-33.
  • 3Sy-Ming Guu,Yan-Kuen Wu.Two-phase for solving the fuzzy linear programming problems[J].Fuzzy Sets and Systems,1999,107:191-195.
  • 4Dingwei Wang.An inexact approach for linear programming problems with fuzzy objective and resources[J].Fuzzy sets and systems 1997,89:61-68.
  • 5B Werners.Aggregation models in mathematical programming,G.Mtra(Ed),Mathematical Models for Decision Support; Springer Berlin,1988.
  • 6杨吉会,曹炳元.具有模糊关系约束的线性规划的解法[J].系统工程学报,2008,23(5):627-631. 被引量:4
  • 7朱章遐,曹炳元,李德权.全系数模糊型线性规划的偏差法[J].模糊系统与数学,2008,22(6):152-157. 被引量:4

二级参考文献13

  • 1Zimmerman H J. Fuzzy set theory and its aplieations[M]. Kluwer-Nijhoff Publishing,1985.
  • 2Tong S C. Interval number and fuzzy number linear programming [J]. Fuzzy Sets and Systems, 1994,66:301-306.
  • 3Yao J S,Wu K M. Ranking fuzzy numbers based on decomposition principle and signed distance[J]. Fuzzy Sets and Systems, 2000,116 : 275-288.
  • 4Maleki H R,Tata M,Mashinchi M. Linear programming with fuzzy variables[J]. Fuzzy Sets and Systems,2000, 109:21-33.
  • 5Qiao Z,Wang G Y. On solutions and distribution problems of the linear programming with fuzzy random variables coefficients[J]. Fuzzy Sets and Systems, 1993,58 : 155-170
  • 6Di Nola A, Sessa S, Pedrycz W, et al. Fuzzy Relation Equations and Their Applications to Knowledge Engineering [ M ]. Dordrecht, Boston, London : Kluwer Academic Publishers, 1989.
  • 7Fang S C, Li G Z. Solving fuzzy relation equations with a linear objective function[ J]. Fuzzy Sets and Systems, 1999, 103 (1) : 107-113.
  • 8Lu J J, Fang S C. Solving nonlinear optimization problems with fuzzy relation equation constraints [ J 1. Fuzzy Sets and Systems, 2001, 119(1): 1- 20.
  • 9Yang J H, Cao B Y. Geometric programming with fuzzy relation equation constraints [ A] In : Proceedings of 2005 IEEE International Fuzzy Systems Conference [ C ]. Reno, Nevada: The Institute of Electrical and Electronics Engineer, Inc. , 2005. 557-560.
  • 10Guu S M, Wu Y K. Minimizing a linear objective function with fuzzy relation equation constraints [J]. Fuzzy Optimization and Decision Making, 2002, 1 (4) : 347-360.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部