期刊文献+

一种新型的多种群微粒群算法 被引量:2

Novel multi-population particle swarm optimizer
下载PDF
导出
摘要 针对微粒群算法容易出现早熟问题,提出一种动态种群与子群混合的微粒群算法(SPSDPSO)。该算法在微粒群搜索停滞时对微粒进行分群,在子群内部通过微粒随机初始化以及个体替代策略提高优化性能,在子群进化一定代数后重新混合为一个种群继续优化,种群进化与子群进化交替进行直至满足算法终止条件。SPSDPSO的种群与子群混合进化策略增强了群体多样性,并且使得子群体之间能够进行充分的信息交流。收敛性分析表明,SPSDPSO以概率1收敛到全局最优解。函数测试结果表明,新算法的全局收敛性能有了显著提高。 To prevent the problem of premature convergence frequently appeared in particle swarm optimizer(PSO),a shuf-fled population and subpopulations dynamic of PSO(SPSDPSO) is proposed.In the approacht,he whole population is divided into different subpopulations when particles search stagnated for certain iterations.Moreover,some individuals of subpopula-tions are re-initiated randomly and some individuals are substituted to improve the search ability further.Particles of different subpopulations are shuffled together to search for the destination after certain iterations.The processes of population and sub-populations optimization alternate are repeated until the terminal conditions satisfied.The strategy of shuffled population and subpopulations dynamic enhances the diversity of the swarm and subpopulations can exchange useful optimization informa-tion among themselves.The SPSDPSO is guaranteed to converge to the global solution with probability one.The functional test shows that SPSDPSO algorithm has advantages of convergence property.
作者 王辉
出处 《计算机工程与应用》 CSCD 北大核心 2010年第35期45-48,51,共5页 Computer Engineering and Applications
基金 上海应用技术学院科研基金(No.YJ2009-06)~~
关键词 微粒群算法 子群 动态混合 随机重新初始化 替代 particle swarm optimizers ubpopulations huffled dynamicr e-initiated randomlys ubstituted
  • 相关文献

参考文献13

  • 1Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proceeriings of the IEEE International Conference on Neural Networks (Perth, Australia).Piscataway, N J, IV, IEEE Service Center, 1995: 1942-1948.
  • 2Poli R, Kennedy J, Blackwell T.Particle Swarm Optimization: An overview[J].Swarm Intelligence,2007,1:33-57.
  • 3王辉,钱锋.群体智能优化算法[J].化工自动化及仪表,2007,34(5):7-13. 被引量:60
  • 4Chatterjee A, Siarry ENonlinear inertia weight variation for dynamic adaptation in particle swarm optimization[J].Computers &Operations Research,2006,33 : 859-871.
  • 5Ratnaweera A,Halgamuge S K,Watson H C.Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[C]//IEEE Transactions on Evolutionary Computation, 2004,8 (3) :240-255.
  • 6Zhang W J,Xie X EDEPSO:hybrid particle swarm with differential evolution operator[C]//IEEE Interenational Conference on Systems, Man and Cybernetics (SMCC) , Washington DC, USA, 2003 : 3816-3821.
  • 7Grosan C,Abraham A, Han S, et al.Hybrid Particle Swarm-evolutionary algorithm for search and optimization[J].Lecture Notes in Computer Science,2005,3789:623-632.
  • 8Shelokar P S, Siarry P, layaraman V K, et al.Particle swarm and ant colony algorithms hybridized for improved continuous optimization[J].Applied Mathematics and Computation, 2007, 188: 129-142.
  • 9王光辉,曾建潮.一种具有动态群体规模的微粒群算法[J].计算机工程与应用,2008,44(11):52-56. 被引量:1
  • 10袁代林,陈虬.马氏模型PSO及其随机过程分析[J].计算机工程与应用,2009,45(31):49-52. 被引量:3

二级参考文献97

共引文献68

同被引文献19

  • 1王钰,郭其一,李维刚.基于改进BP神经网络的预测模型及其应用[J].计算机测量与控制,2005,13(1):39-42. 被引量:87
  • 2王安娜,陶子玉,姜茂发,田慧欣,张丽娜.基于PSO和BP网络的LF炉钢水温度智能预测[J].控制与决策,2006,21(7):814-816. 被引量:21
  • 3刘宇,覃征,史哲文.简约粒子群优化算法[J].西安交通大学学报,2006,40(8):883-887. 被引量:13
  • 4Kennedy J,Eberhart R. Part icle sw arm op t im izat ion[A]. P roc IE E E Int Conf on N eu ral N etw orks [C].Perth, 1995. 194221948.
  • 5Eberhart R, Kennedy J. A new op t im izer using part iclesw arm theory [A]. P roc 6th Int S ymposium on MicroMachine and H um anence[C ]. Nagoya, 1995. 39243.
  • 6Poli R, Kennedy J, Blackwell T. Particle swarm optimization: an overview[J], Swarm Intelligence, 2007, (1): 33-57.
  • 7Chatterjee A, Siarry P. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization [J]. Computers & Operations Research, 2006, 33: 859-871.
  • 8Dong Hw a Kim, Jae Hoon Cho. Intelligent control of AVR system using GA-BF [C]//Lecture Notes in Computer Science Proc of Springer, 2005: 854-859.
  • 9Xie Liping,Zeng Jianchao. The performance analysis of artificial physics optimization algorithm driven by different virtual forces[J]. IClC Express Letters, 2010, 1(4): 239-244.
  • 10Niu Ben, Zhu Yunlong, He Xiaoxian, et al. An improved particle swarm optimization based on bacterial chemotaxis[C] //Proceedings of the 6th World Congress on Intelligent Control and Automation: IEEE, 2006: 3193-3197.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部