期刊文献+

结合梯度和区域信息的多尺度水平集图像分割 被引量:6

Multi-scale level set image segmentation combined of gradient and region information
下载PDF
导出
摘要 提出了一种结合梯度和区域信息的多尺度水平集图像分割算法。该算法结合梯度和区域信息构造能量函数,在梯度约束项中,构建了一个基于小波高频分量的边缘检测函数,在区域约束项中,运用经典C-V模型的区域项,得到混合C-V模型,采用变分法求解,并消除了水平集的重初始化。利用小波变换首先在逼近图像中运用混合C-V模型得到粗分辨图像的一个粗尺度分割,再对当前粗尺度下的最终轮廓线作内插操作,将得到的近似轮廓曲线作为初始水平集函数在原图像中运用消除重初始化的C-V模型演化得到最终的分割。实验结果表明,在同样的模型参数条件下,该方法具有比传统方法更高的演化效率和分割质量。 This paper proposes a multi-scale level set algorithm for image segmentation which combines of gradient and re-gion information.An energy function is constructed which combines of gradient and region information and gets a hybrid Chan-Vese model,which constructs an edge detection function based on wavelet high-frequency components in gradient con-straint term and applies region term of Chan-Vese model in region constraint term.Then use variational method to solve and eliminate the re-initialization procedure.The original image is firstly transformed into the wavelet domain to get a coarse ap-proximation,and an approximation contour is obtained on the coarse approximation by the hybrid Chan-Vese model.The ap-proximation contour is interpolated into the original-scale contour.Then the original-scale contour is taken as an initial level set function and the next active contour evolution which applies the Chan-Vese model of eliminating re-initialization is per-formed on the original image to get the real contour.Experimental results show that this method has higher evolution efficien-cy and quality than traditional methods in the condition of equal model parameters.
作者 冯媛 汪西莉
出处 《计算机工程与应用》 CSCD 北大核心 2010年第35期180-184,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.40671133)~~
关键词 图像分割 水平集 C-V模型 梯度 区域信息 多尺度 image segmentationl evel set Chan-Vese model gradientr egion information multi-scale
  • 相关文献

参考文献11

  • 1Osher S, Sethian J.Fronts propagating with curvature-dependent speed:Algorithms based on the Hamilton-Jacobi formulations[J]. Journal of Computational Physics, 1988,79( 1 ) : 12-49.
  • 2Malladi R,Sethian J A,Vemuri B C.Shape modeling with front propagation:A level set approach[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995,17(2) : 158-175.
  • 3Caselles V,Catte F,Coll T,et al.A geometric model for active contours in image processing[J].Numerische Mathematic, 1993, 66(1):1-31.
  • 4Mumford D, Shah J.Optimal approximation by piecewise smooth ftmetions and associated variational problems[J].Communications on Pure and Applied Mathematics, 1989,42(5):577-685.
  • 5Chan T,Vese L.Active contours without edges[J].IEEE Transactions on Image Processing,2001,10(2):266-277.
  • 6Li C,Xu C,Gui C,et al.Level set formulation without re-initialization: A new variational formulation[C]//IEEE Conference on Computer Vision and Pattern Recognition, San Diego, 2005, 1: 430-436.
  • 7任继军,何明一.一种新的水平集图像分割方法[J].计算机工程与应用,2007,43(19):16-18. 被引量:4
  • 8朱峰,宋余庆,朱玉全,郭依正.基于梯度的混合Mumford-Shah模型医学图像分割[J].计算机工程,2007,33(24):200-202. 被引量:13
  • 9Cheng L,Yang J, Fan X,et al.A generalized level set formula- tion of the Mumford-Shah functional for brain MR image seg- mentation[M].Heidelberg, Berlin: Springer, 2005.
  • 10Zhang H, Bian Z, Guo Y, et al.An efficient multi-scale approach to level set evolution[C]//Proceedings of the 25th Annual International Conference of the IEEE EMBS.Caneun, Mexico: [s.n.], 2003 : 17-21.

二级参考文献28

  • 1T ao Z,Beaty J,Jaffe et al.Gray level models for segmenting myocardium and blood in cardiac ultrasound images[C].In:Conference Proceedings of International Symposium on Biomedical Imaging,2002:265~269
  • 2Nikos Paragios,Marie-Pierre Jolly,Maxime Taron et al.Active Shape Models and Segmentation of the Left Ventricle in Echocardiography.Scale-Space,2005:131 ~ 142
  • 3Gao Y Gao,S Ding et al.Semi-automatic segmentation of the endocardial boundary in intracardiac echocardiographic images[C].In:EMBC,2004 ;3:1911~1913
  • 4Angelini E D,Laine A F,Takuma S et al.LV volume quantification via spatiotemporal analysis of real-time 3-d echocardiography[J].IEEE Transactions on Medical Imaging,2001 ;20(6):457~469
  • 5S Gupta1,R C Chauhan1,S C Sexana.Wavelet-based statistical approach for speckle reduction in medical ultrasound images[J].Medical and Biological Engineering and Computing,Springer Berlin/Heidelberg,2004;42:189~192
  • 6Mallat S G.A theory for multiresolution signal decomposition:the wavelet representation[J].IEEE PAMI,1988; 11:674~693
  • 7V Caselles,F Catte,T Coll et al.A geometric model for active contours[J].Numerische Mathematik,1993; 66:1~31
  • 8Osher S,Sethian J A.Fronts propagating with curvature-dependent speed:algorithm based on Hamilton-Jacobi formulations[J].Journal of Computational Physics,1988; 79:12~49
  • 9Tony F Chan,Luminita A.Vese:Active contours without edges[J].IEEE Transactions on Image Processing,2001; 10(2):266~277
  • 10Jasjit S Suri,Kecheng Liu,Sameer Singh et al.Shape recovery algorithm using level sets in 2-D/3-D Medical Imagery:a state-of-theart review[J].IEEE Transitions on information technology in biomedicine,2002;6(1):8~27

共引文献19

同被引文献48

  • 1赵建新,王堃.边缘特性及边缘检测在图像插值算法中的应用研究[J].硅谷,2009,2(22). 被引量:2
  • 2任德智,刘悦翠.区域森林资源健康评价指标体系研究[J].西北林学院学报,2007,22(2):194-199. 被引量:48
  • 3庄天戈.CT原理与算法[M].上海:上海交通科技大学出版社,1993.5-6.
  • 4冈萨雷斯.数字图像处理[M].北京:电子工业出版社,2005.
  • 5罗述谦,周果宏.医学图像处理与分析[M].北京:科学出版社,2010:164-165.
  • 6ATLAS S W. Magnetic resonance imaging of the brain and spine[ M]. 3rd ed. Philadelphia Lippincott Williams and Wilkins,2002.
  • 7OSHER S, SETHIAN J A. Fronts propagating with cura- ture-dependent speed: algorithms based on Hamilton-Ja- cobi formulations [ J ]. Journal of Computational Physics, 1988,79 : 12-49.
  • 8CHAN T, VESE L. Active contours without edges [J]. IEEE Transaction on Image Processing, 2001,10 ( 2 ) : 266 -277.
  • 9CHENG L, YANG J, FAN X. A generalized level set for- mulation of the Mumford-Shah functional for brain MR im- age segmentation [ M ]. Heidelberg, Berlin : Springer,2005.
  • 10LI CH M, XU CH Y , GUI CH F, et al. Level set evolution without re-initialization: A new variational formulation [ J]. Computer Society Conference On Computer Vision and Pattern Recognition,2005.

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部