摘要
讨论带广义箱子约束的非线性约束优化.基于Topkis-Veinott线性规划逼近法,对搜索方向子问题进行改进,产生两个新的线性逼近子问题,重要的是两个新子问题的解均能以简单的显式表达式直接给出.由此建立问题非精确线搜索算法,算法大大降低了计算量,复杂性及CPU时间.仅在目标函数连续可微的条件下,算法具有全局收敛性.对算法进行较大规模的数值试验.
In this paper,optimization with generalized box constraints is discussed.First,based on the Topkis-Veinott's line program approximate method,two improved direction finding subproblems (DFS) are introduced,and the more important thing is that the optimal solution of the DFS can be obtained by an explicit formula.Then,an algorithm for the discussed optimization is proposed based on the new DFS.The computation cost and complexity as well as CPU time of the proposed algorithm are decreased largely.The global convergence is proved just under the continuous differentiability of the objective function.Finally,numerical experiments on some slight large scale testing problems are reported.
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
2010年第4期386-392,共7页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金
国家自然科学基金(10771040)
广西自然科学基金(0832052)
关键词
广义箱子约束
最优化
线性子问题
显式搜索方向
算法
generalized box constraints
optimization
line subproblem
explicit search directions
algorithm