期刊文献+

非结构网格上求解二维H-J方程的一种WENO格式

A weighted ENO scheme for 2D H-J equations on unstructured meshes
下载PDF
导出
摘要 基于WENO(Weighted Essentially Non-Oscillatory)的思想,提出了一种在非结构网格上求解二维Hamilton-Jacobi(简称H-J)方程的数值方法.该方法利用Abgrall提出的数值通量,在每个三角形单元上构造三次加权插值多项式,得到了一个求解H-J方程的高阶精度格式.数值实验结果表明,该方法计算速度较快,具有较高的精度,而且对导数间断有较高的分辨率. A numerical method for Hamilton-Jacobi equations was developed on unstructured meshes with the WENO(Weighted Essentially Non-Oscillatory) idea.A scheme was gotten with high-order accuracy by constructing cubic weighted interpolation polynomial on every triangular mesh and using the numerical flux Abgrall proposed.Numerical experimental results show that the method costs efficiently,with higher accuracy and higher resolution for the derivative discontinuities.
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2010年第4期396-402,共7页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(10601023)
关键词 H-J方程 非结构网格 WENO 三次加权插值多项式 Hamilton-Jacobi equations unstructured meshes WENO(Weighted Essentially Non-Oscillatory) cubic weighted interpolation polynomial
  • 相关文献

参考文献10

  • 1Osher S,Sethian J.Fronts propagating with curvature dependent speed:algorithms based on Hamilton-Jacobi formulations[J].J Comput Phys,1988,79(1):12-49.
  • 2Osher S,Shu C W.High-order essentially non-oscillatory schemes for Hamilton-Jacobi equations[J].SIAM J Numer Anal,1991,28(4):907-922.
  • 3Jiang G S,Peng D P.Weighted ENO schemes for Hamilton-Jacobi equations[J].SIAM J Sci Comput,2000,21(6):2126-2143.
  • 4Lin C T,Tadmor E.High-resolution non-oscillatory central schemes for approximate Hamilton-Jacobi equations[J].SIAM J Sci Comput,2000,21(6):2163-2186.
  • 5Abgrall R.Numerical discretization of the first-order Hamilton-Jacobi equation on triangular meshes[J].Comm Pure Appl Math,1996,49(12):1339-1373.
  • 6Augoula S,Abgrall R.High order numerical discretization for Hamilton-Jacobi equations on triangular meshes[J].J Sci Comput,2000,15(2):197-229.
  • 7Zhang Y T,Shu C W.High order WENO schemes for Hamilton-Jacobi equations on triangular meshes[J].SIAM J Sci Comput,2003,24(3):1005-1030.
  • 8Jiang G S,Shu C W.Efficient implementation of weighted ENO schemes[J].J Comput Phys,1996,126(1):202-228.
  • 9Shu C W.Total-variation-diminishing time discretizations[J].SIAM J Sci Statist Comput,1988,9(6):1073-1084.
  • 10Shu C W,Osher S.Efficient implementation of essentially non-oscillatory shock-capturing schemes I[J].J Comput Phys,1988,77(2):439-471.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部