期刊文献+

各向异性Besov类在混合范数下基于标准信息的最优恢复

Optimal recovery on anisotropic Besov classes with mixed norms by standard information
下载PDF
导出
摘要 研究了各向异性Besov类中的周期函数基于标准信息的最优恢复问题.利用Vallee-Poisson算子得到逼近的上界,通过构造bump函数得到逼近的下界,进而得到渐近逼近阶. This paper studies problems of optimal recovery on periodic functions of anisotropic Besov classes based on standard information.With the de la Vallee-Poisson operator for the proof of upper bounds and the construction of bump functions for the proof of lower bounds,the exact orders of asymptotic decay rates are obtained.
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2010年第4期447-457,共11页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
关键词 标准信息 最优恢复 渐近逼近阶 Vallee-Poisson算子 Bump函数 standard information optimal recovery asymptotic decay rate de la Vallee-Poisson operator bump function
  • 相关文献

参考文献10

  • 1Michelli C A,Rivlin T J.A survey of optimal recovery[A].In:C A Michelli,T J Rivlin,eds,Optimal Estimates in Approximation Theory[C].New York:Plenum,1977:1-54.
  • 2Nikolskii S M.Approximation of Functions of Several Variables and Imbedding Theorem[M].Berlin,Heidelberg,New York:Springer-Verlag,1975.
  • 3罗俊波,孙永生.各向光滑性不同的多元函数类的最优恢复和宽度[J].数学进展,1998,27(1):69-77. 被引量:4
  • 4Kudryavtsev S N.The best accuracy of reconstruction of finitely smooth functions from their values at a given number of points[J].Izv RAN Math,1998,62:19-53.
  • 5Kudryavtsev S N.Recovering a function with its derivatives from function values at a given number of points[J].Russian Aca Sci Izv Math,1995,45:505-528.
  • 6Traub J F,Wo(z)niakowski H.A General Theory of Optimal Algorithms[M].New York:Academic Press,1980.
  • 7Fang Gensun,Fred J.Hichernell,Li Huan.Approximation on anisotropic multivariate Besov classes of functions by standard information[J].Journal of Complexity,2005,21:294-313.
  • 8Temlyakov V N.Approximation of Periodic Functions[M].New York:Nova Science,1993.
  • 9Pinkus A.N-widths in Approximation Theory[M].New York:Springer-Verlag,1985.
  • 10Traub J F,Wasilkowski G W,Wozniakowski H.Information-based Complexity[M].New York:Academic Press,1988.

二级参考文献2

  • 1孙永生,函数逼近论.上,1989年
  • 2孙永生,函数逼近论.下,1989年

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部