期刊文献+

非线性奇异Hammerstein积分方程的正解

Positive solutions for nonlinear singular integral equations of Hammerstein type
下载PDF
导出
摘要 利用锥压缩和锥拉伸不动点定理研究下列非线性奇异Hammerstein积分方程正解及多重正解的存在性u(t)=∫_0~1k(t,s)a(s)f(s,u(s))ds其中f∈C([0,1]×R^+,R^+),a∈L(0,1),a在[0,1]上可奇异且非负,满足∫_0~1a(t)dt>0, k∈C([0,1]×[0,1],R^+).非线性项f的超线性和次线性增长条件都是用线性积分算子的第一特征值刻画的,从而本质推广了和改进了现有文献的结果.作为应用,还讨论了一个二阶奇异Sturm-Liouville问题的正解及多重正解的存在性问题. By using the fixed point theorem of compression and expansion type on a cone,this paper studies the existence and multiplicity of positive solutions for nonlinear singular integral equation of the form u(t) =∫_0^1 k(t,s)a(s)f(s,u(s))ds where f∈C([0,1]×R^+,R^+),a∈L(0,1) may be singular and is nonnegative on[0,1]with∫_0^1 a(t)dt0,and k∈C([0,1]×[0,1],R^+).We use the first eigenvalue of an associated linear integral operator to characterize growth behaviors of the nonlinearity f both for the superlinear case and for the sublinear case,extending and improving the results in the existing literature essentially.As applications,these results are used to discuss the existence and mutiplicity of positive solutions for a second-order singular Sturm-Liouville problem.
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2010年第4期475-480,共6页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(10871116 10971179) 山东省自然科学基金(ZR2009AL014)
关键词 奇异Hammerstein积分方程 谱半径 共轭算子 正解 singular Hammerstein integral equation cone spectral radius conjugate operator positive solution
  • 相关文献

参考文献6

二级参考文献25

  • 1郭大均.非线性泛函分析[M].济南:山东科技出版社,1985..
  • 2Lan Kunquan and Webb R L. Positive solutons of similinear differential equations with singularities.J Differential Equations, 1998, 148: 407-421.
  • 3Erbe L H, Wang Haiyanl On the existence of positive solutions of ordinary differential equations. Proc Amer Math Soc , 1994, 120(3): 743-748.
  • 4Wang Haiyan. On the existence of positive solutions for semilinear elliptic equations in the annulus. J Differential Equations, 1994, 109: 1-7.
  • 5Guo Dajun, Lakshmikantham V. Nonlinear Problems in Abstract Cones. Academic Press, San Diego, 1988.
  • 6Zhang Yong,J Math Anal Appl,1994年,185卷,215页
  • 7Guo Dajun,Kexue Tongbao,1984年,29卷,5期,575页
  • 8郭大钧,非线性泛函分析,1985年
  • 9Zhao zengqin,Acta Math Sin New Ser,1998年,41卷,5期,1025页
  • 10Lan K Q,J Diff Eqs,1998年,148卷,3期,407页

共引文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部