摘要
通过实验分析提出了一种基于图像统计学和Kullback-Leibler散度算法的最优光圈图案的选择方法。因为光圈图案本身对深度信息是有一定的敏感度和区分能力,只是会有好坏之分,所以选择一个最优的光圈图案对于深度信息的区分及提取有很大帮助。利用图像统计学原理得到模糊图像在频域中的分布,计算不同深度距离上的两两模糊图像的分布之间的Kullback-Leibler散度值,并通过实验找到评价光圈图案区分深度信息的综合能力的方法,以此作为不同光圈图案间的比较依据,进而找出在几种图案中对区分深度信息相对最优的光圈图案。利用提出的方法对多个自制光圈图案进行了实验,实验结果表明了该方法的可行性。介绍了编码光圈在图像复原上的简单应用。
A selective method of optimal aperture pattern is presented by the statisticalmodel of images using Kullback-Leiber divergence algorithm after experimental analysis.Aperture patterns have different sensitivities for depth information and different abilities to distinguish between depths,that is,it's helpful to distinguish and extract depth information.The KL divergence between the blurry image distributions is computed,which obtained by the statistical model of image,in the frequency domain at any two depths,and find an evaluation method of comprehensive ability of the pattern to distinguish the depth information.Compare to different patterns by this evaluation,we can find the relative best one between them.The method proposed is applied to select a relative good one between several aperture patterns and its feasibility is confirmed by experimental results.Finally,the application of coded aperture on restoration is introduced.
出处
《计算机工程与设计》
CSCD
北大核心
2010年第23期5128-5132,共5页
Computer Engineering and Design
关键词
编码光圈
图像的统计模型
相对熵算法
实验性验证
图像复原
coded aperture
statistical model of image
Kullback-Leiber divergence algorithm
experimental verification
image restoration