期刊文献+

环渤海低平原土壤盐化特征及基于DEM的Co-Kriging插值研究 被引量:5

Spatial Variability of Soil Salinity and Its Esti mation by Co-Kriging Based on DEM in the Low Plain Around the Bohai Sea
下载PDF
导出
摘要 针对环渤海低平原土壤盐化特征,通过选取0~20cm深度内的127个代表性土样进行土壤全盐量测定,结合DEM,综合运用地质统计学方法与GIS技术研究土壤盐分的空间分布状况。结果表明,土壤盐分空间变异强度属于中等,土壤盐分单变量和交互变量的空间相关程度均属于中等,空间自相关距离分别为40.60km和135.60km。环渤海低平原土壤盐分含量在不同高程上存在分布差异,并随着高程的降低土壤盐分含量呈增加的趋势。自内陆平原向东部滨海平原土壤盐分含量逐渐增加,盐分含量较高的地区出现在唐山-天津-沧州-东营-滨州一线。非盐化土以内陆平原为主,分布在保定-衡水-邢台-邯郸一线。通过协同克立格插值的均方根误差与普通克立格插值相比减少了0.29%,而预测值与实测值的相关系数提高了20.58%。 Takinginto account salinization existingin the low plain around the Bohai Sea at present ,soil samples from0 to 20 cm were collected from 127 sitesinthe plain ,and soil salinity was analyzed .In additional ,the digital elevation model (DEM) of the study area was also considered . Geostatistical method combined with GIS was used to analyze spatial variability of soil salinity . Results showed that :spatial variability belonged to moderate degree with CV=0.91 .Spatial correlation of single variable and cross variable belonged to moderate degree ,spatial correlation distance was 40.60 kmand 135.60 kmrespectively .Soil salinity spatial distribution difference existedin different altitude as the altitude falling soil salinity rising .Soil salinity content showed anincreasing trend frominland plain (Baoding-Hengshui-Xingtai-Handan) to the east coastal plain (Tangshan-Tianjin-Cangzhou-Dongying-Binzhou).Compared with the ordinary Kriging under the same sampling numbers ,the root-mean-square error produced by Co-Kriging decrease by 0.29%, while the correlation coefficient between the predicted value and the measured value increased by 20.85%.
出处 《南水北调与水利科技》 CAS CSCD 2010年第6期70-73,90,共5页 South-to-North Water Transfers and Water Science & Technology
基金 国家科技支撑计划项目(2007BAD69B02 2009BADA3B05) 河北省科技厅重点基础研究项目(08966711D)
关键词 环渤海低平原 土壤盐分 DEM 协同克立格 low plain around the Bohai Sea soil salinity digital elevation model (DEM) Co-Kriging
  • 相关文献

参考文献20

  • 1Cetin M, Kirda C. Spatial and temporal changes of soil salinity in a cotton field irrigated with low-quality water[J]. Journal of Hydrology, 2003, 272:238 -249.
  • 2Singh R B, Chauhan CPS, Minhas P S. Water production functions of wheat (Triticum aestivum L. ) irrigated with saline and alkali waters using double-line source sprinkler system[J]. Agricultural Water Management, 2009, 96:736 -744.
  • 3IL'Ichev A T, Tsypkin G G, Pritchard D, et al. Instability of the salinity profile during the evaporation of saline groundwater I[J]. The Journal of Fluid Mechanics, 2008, 614:87-104.
  • 4Guswa A J. Models of soil moisture dynamics inecohydrology: a comparative study [J]. Water Resources Research, 2002, 38 (9) : 1-15.
  • 5Liu X Y, Peterson ], Zhang Z Y, et al. Improving soil salinity prediction with high resolution DEM derived from LiDAR data [J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2005, 36(7) : 41- 43.
  • 6Lin Y S, Lin Y W, Wang Y, et al. Relationship between topography and spatial variations in groundwater and soil morphology within the Taoyuan-Hukou Tableland, Northwestern Taiwan [J].Geomorphology, 2007, 90(1- 2):36-54.
  • 7Wu W, Fan Y, Wang Z G, et al. Assessing effects of digital elevation model resolutions on soil landscape correlations in a hilly area[J].Agriculture, Ecosystems and Environment, 2008, (126) : 209- 216.
  • 8Odeh I O A, Mcbratney A B, Chittleborough D J. Further re sults on prediction of soil properties from terrain attributes Heterotopic cokriging and regression-kriging [J]. Geoderma 1995, 67(3-4):215- 226.
  • 9Eldeiry A A, Garcia L A. Comparison of ordinary Kriging, re gression Kriging, and Cokriging techniques to estimate soil salinity using Landsat images[J]. Journal of Irrigation and Drainage Engineering, 2010, 136(6) : 355-364.
  • 10Jose M P, Fernando V, Jose L R. Spatial evaluation of soil salininty using the WET sensor in the irrigated area of Seuura river lowland[J]. Journal of Plant Nutrition and Soil Science, 2010, doi: 10. 1002/jpln. 200900221.

二级参考文献35

  • 1莫治新,尹林克,文启凯.塔里木河中下游表层土壤盐分空间变异性研究[J].干旱区研究,2004,21(3):250-253. 被引量:30
  • 2ZHANGShi-Rong,SUNBo,ZHAOQi-Guo,XIAOPeng-Fei,SHUJian-Ying.Temporal-Spatial Variability of Soil Organic Carbon Stocks in a Rehabilitating Ecosystem[J].Pedosphere,2004,14(4):501-508. 被引量:43
  • 3盛建东,杨玉玲,陈冰,武红旗.土壤总盐、pH及总碱度空间变异特征研究[J].土壤,2005,37(1):69-73. 被引量:45
  • 4周慧珍,龚子同.土壤空间变异性研究[J].土壤学报,1996,33(3):232-241. 被引量:237
  • 5[4]Florinsky, I.V. Accuracy of local topographic variables derived from digital elevation models[J]. INT. J . Geographical Information Science, 1998,12(1): 47~61.
  • 6[5]Chang, K , Tsai, B. The effect of DEM resolution on slope and aspect mapping [J ]. Cartography and Geographic Information Systems, 1991,18: 69~77.
  • 7[6]Carter, J. The effect of data precision on the calculation of slope and aspect using gridded DEMs[J]. Cartographica, 1992,29(1):22~34.
  • 8[7]Davis, F.W, Dozier, J. Information analysis of a spatial database for ecological land classification[J]. Photogrammetric Engineering and Remote Sensing , 1990, 56: 605~613.
  • 9[8]Band, L. E. Topographic partition of watershed with digital elevation models[J]. Water Resources Research ,1986, 22(1): 15~24.
  • 10[9]Desmet, P.J.J, Govers, G. Comparison of routing algorithms for digital elevation models and their implication for predicting ephemeral gullies[J ]. International Journal of Geographical Information science, 1996,10(10): 311~331.

共引文献1840

同被引文献82

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部