期刊文献+

关于一般耦合矩阵方程的迭代对称解

ON THE ITERATIVE SYMMETRIC SOLUTIONS OF THE GENERAL COUPLED MATRIX EQUATIONS
原文传递
导出
摘要 本文构造了一个有效的迭代方法(CGL)去求解一般耦合矩阵方程的对称解.若一般耦合矩阵方程关于对称解相容,则对于任意给定的初始对称矩阵组,利用所构造的迭代算法,都能在有限步迭代出所求问题的一组对称解,若选用一些特殊的初值,则可获得矩阵方程的极小范数对称解.最后的数值例子表明了所给算法的有效性. In this paper, a conjugate gradient-like iterative method (CGL) is presented to find the symmetric solutions of the general coupled matrix equations. When the general coupled matrix equations has symmetric solutions, then we can find the symmetric solutions by CGL iterative method for any symmetrical initial matrix group within finite iterative steps. Also, the least norm symmetric solution can be obtained by properly choosing a group of initial matrices. Finally, we test the algorithm and show its effectiveness by using a numerical example.
作者 李东平
出处 《数值计算与计算机应用》 CSCD 北大核心 2010年第4期290-299,共10页 Journal on Numerical Methods and Computer Applications
关键词 一般耦合矩阵方程 矩阵方程的相容性 极小范数对称解 the general coupled matrix equations the solvability of the matrix equa-tions least norm symmetric solution
  • 相关文献

参考文献13

  • 1Chu K E. Symmetric solutions of linear matrix equations by matrix decompositions[J]. Linear Algebra Appl., 1989, 119: 35-50.
  • 2Dai H. On the symmetric solutions of the linear matrix equations[J]. Linear Algebra Appl., 1990, 131'. 1-7.
  • 3Peng Z Y, Hu X, Zhang L. An iteration method for the symmetric solutions and the optimal approximation solution of the matrix equation AXB=C[J]. Appl. Math. Comput., 2005, 160(3): 763-777.
  • 4Ding F, Chen T W. Itertive least squares solutions of coupled Sylvester matrix equations[J]. Sysm. Control Lett., 2005, 54(3): 397-402.
  • 5Peng Z Y, Hu X, Zhang L. An iteration method for the symmetric solutions and the optimal approximation solution of the matrix equation AXB=C[J]. Appl. Math. Comput., 2005, 160(3):763-777.
  • 6Xu G P, Wei M S, Zheng D S. On solutions of matrix equation AXB+CYD=F[J]. Linear Algebra Appl., 1998, 279: 93-109.
  • 7Golub G H, Van Loan C F. A Hesserberg- Schur method for the matrix problem AX+XB=C[J]. IEEE Trans. Automat. Control., 1979, 24: 909-913.
  • 8Peng Z Y, Peng Y X. An efficient iterative method for solving the matrix equation AXB+CYD=E[J]. Numer. Linear Algebra Appl., 2006, 13: 473-485.
  • 9Ding F, Chen T W. On itertive solutions of general coupled matrix equations[J]. SIAM J. Control Optim., 2006, 44(6): 2269-2284.
  • 10Sheng X P, Chen G L. A finite iterative method for solving a pair of linear matrix equations (AXB, CXD) = (E, F)[J]. Appl. Math. Comput., 2007, 189: 1350-1358.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部