期刊文献+

奇异摄动周期边界问题的自适应计算方法

Adaptive numerical method for singularly perturbed equation with periodical boundary value problem
下载PDF
导出
摘要 针对椭圆型奇异摄动周期边界方程,提出有效的计算方法,并证明所构造的计算方法是自适应的,随着小参数的变小,网格剖分数目不需要很大,仍可以得到很好的计算效果.讨论边界层的性质,将解的奇性分离为光滑部分和奇性部分,对光滑部分和奇性部分的各阶偏导数进行估计;在Shishkin网格上提出有限差分方法,证明离散极值原理和一致稳定性;构造相应的闸函数以证明所提方法具有一致收敛性.给出一个数值例子,计算结果表明,计算方法拟合了边界层的性质,也说明理论分析的正确性.所提出的计算方法可应用于类似奇异摄动问题的计算. Aimed at singularly perturbed elliptic partial differential equation with periodical boundary value problem,an effective numerical method was constructed.Adaptive convergence was proved.Effective computational result was obtained with few number grid when the parameter was small.Firstly,the property of boundary layer was discussed.The solution was decomposed into the smooth component and the singular component.The derivatives of the smooth component and the singular component were estimated.Secondly,finite difference method was proposed on the Shishkin mesh.The discrete maximum principle and the uniform stability result were studied.Thirdly,uniform convergence is proved by constructing the barrier function.Finally,numerical experiment was proposed to support the theoretical result.Numerical results show that the presented method fitted the property of boundary layer well.The solution for this kind of multi-scale problem was provided in theory.The presented numerical method can be applied to calculate other singularly perturbed problems.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2010年第11期2214-2219,共6页 Journal of Zhejiang University:Engineering Science
基金 中国博士后科学基金资助项目(50679074) 浙江科技学院科研资助项目(2008050)
关键词 椭圆型方程 抛物型方程 SHISHKIN网格 一致收敛性 elliptic partial differential equation parabolic partial differential equation Shishkin mesh uniform convergence
  • 相关文献

参考文献5

二级参考文献37

  • 1谢康和.双层地基─维固结理论与应用[J].岩土工程学报,1994,16(5):24-35. 被引量:123
  • 2谢康和,潘秋元.变荷载下任意层地基一维固结理论[J].岩土工程学报,1995,17(5):80-85. 被引量:103
  • 3谢康和,温介邦,胡虹宇,董亚钦.考虑应力历史影响的饱和土一维非线性固结分析[J].科技通报,2006,22(1):68-76. 被引量:6
  • 4Farrell P, Hegarty A F, Miller J J H, et al. Robust Computational Techniques for Boundary Layers[M]. Boca Raton: Chapman and Hall/CRC, 2000.
  • 5Miller J J H, O'Riordan E, Shishkin G I. Fitted Numerical Methods for Singular Perturbation Problems[M].Singapore: World Scientific, 1995.
  • 6CAI Xin, LIU Fa-wang. Uniform convergence difference schemes for singularly perturbed mixed boundary problems[ J]. Journal of Computational and Applied Mothematics, 2004, 166(1) :31-54.
  • 7CAI Xin, LIU Fa-wang. A Reynolds uniform scheme for singularly perturbed parabolic differential equation[J].ANZIAM J, 2007,47(5) :633-548.
  • 8Kellogg R B, Tsan A. Analysis of some difference approximations for a singular perturbation problem without turning points[ J ]. Math Camp, 1978,26( 12):1025-1039.
  • 9Bakhvalov N S. On the optimization of methods for boundary-value problems with boundary layers[J]. USSR Computational Mathematics and Mathematical Physics, 1969,9 ( 4 ) : 139-166.
  • 10Jayakumar J. Improvement of numerical solution by boundary value technique for singularly perturbed one dimensional reaction diffusion problem.[J].Applied Mathematics and Computation, 2003,142(2) :417-447.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部