期刊文献+

多目标多传感器数据融合轨迹追踪的建模与仿真 被引量:3

Multi-target multi-sensor data fusion's modelling and simulation for trajectory tracking
下载PDF
导出
摘要 利用卡尔曼滤波(KF)和交互多模型(IMM)滤波进行传感器多目标测量的建模,在多目标轨迹跟踪中利用JPDAF和神经网络融合算法。轨迹联合和数据融合用于融合轨迹数据时假设,2只传感器追踪单目标到3只传感器追踪3个目标,在此基础上评估了多个散布式传感器对于单目标、双目标和多目标的测量效能。对于不同滤波器的性能进行了比较,并得到轨迹融合可以很好地逼近真实轨线,优于其他任何传感器目标测量方法。 An executing of track fusion using various algorithms has been demonstrated. The sensor measurements of these targets are modeled using Kalman filter (KF) and interacting multiple models ( IMM ) filter. The joint probabilistic data association filter (JPDAF) and neural network fusion (NNF) algorithms were used for targets tracking. Track association and fusion algorithm are executed to get the fused track data for various scenarios ,from two sensors tracking a single target to three sensors tracking three targets, to evaluate the effects of multiple and dispersed sensors for single target, two targets, and multiple targets. The targets chosen were distantly spaced, closely spaced and crossing. Performance of different filters was compared and fused trajectory is found to be closer to the true target trajectory as compared to that for any of the sensor measurements of that target.
出处 《传感器与微系统》 CSCD 北大核心 2010年第11期82-85,89,共5页 Transducer and Microsystem Technologies
基金 国家"863"计划资助项目(2010AAJ114)
关键词 多传感器数据融合 多目标追踪 数据联合 交互多模型 multi-sensor data fusion ( MSDF ), multi-target tracking ( MTT ) data association interacting multiple models(IMM)
  • 相关文献

参考文献6

  • 1Bar-Shalom, Y. On the track-to-track correlation problem [ J ] IEEE Trans Autom Cont,1981,26(2) :571 --572.
  • 2Bar-Shalom Y. The effect of the common process noise on the two sensor fused track covariance [ J ]. IEEE Trans Aerosp Electron Sys, 1986,22 ( 2 ) : 803 --805.
  • 3Singer R A, Kanyuck A J. Correlation of multiple-site track data[J]. IEEE Trans Aerosp Electron Sys,1970,AES-6(2) :180 -187.
  • 4Bjorn K,Jan-Ove J,Wide P. A fusion toolbox for sensor data fusion in industrial recycling[ J ]. IEEE Trans lnstr Measure,2002, 51(1) :144 -49.
  • 5王金鑫,赖旭芝,吴敏.一种基于遗传算法的无线传感器网络定位新算法[J].计算技术与自动化,2007,26(4):53-56. 被引量:16
  • 6王天荆,杨震,胡海峰.基于遗传算法的无线传感器网络自适应数据融合路由算法[J].电子与信息学报,2007,29(9):2244-2247. 被引量:15

二级参考文献16

  • 1潘伟,刁华宗,井元伟.一种改进的实数自适应遗传算法[J].控制与决策,2006,21(7):792-795. 被引量:53
  • 2Wang A,Heinzelman W B,Sinha A,and Chandrakasan A P.Energy-scalable protocols for battery-operated microsensor networks.Journal of VLSI Signal Processing,2001,29(3):223-237.
  • 3Luo H,Liu Y,and Das S K.Routing correlated data with fusion cost in wireless sensor networks.IEEE Trans on Mobile Computing,2006,5(11):1620-1632.
  • 4Luo Hong.Energy efficient routing with adaptive data fusion in sensor network.Proceedings of the Third ACM/SIGMOBILE Workshop on Foundations of Mobile Computing,Cologne,Germany,Aug.2005:80-88.
  • 5Luo Hong,Luo Jun,Liu Yonghe,and Das S K.Adaptive data fusion for energy efficient routing in wireless sensor networks.IEEE Trans.on Computers,2006,55(10):1286-1299.
  • 6Qi H.Multiresolution data integration using mobile agents in distributed sensor networks.IEEE Trans.on Systems,Man and Cybernetics Part C:Applications and Rev,2001,31(3):383-391.
  • 7Rajagopalan R,Mohan C K,Varshney P,and Mehrotra K.Multi-objective mobile agent routing in wireless sensor networks.IEEE Trans.on Congress on Evolutionary Computation,2005,5(5):1730-1737.
  • 8Hyder A K.Multisensor fusion.Netherlands:Kluwer Academic Publishers,2002:1-39.
  • 9Wu Q,Rao N S V,Barhen J,Iyengar S S,Vaishnavi V K,Qi H,and Chakrabarty K.On computing mobile agent routes for data fusion in distributed sensor networks.IEEE Trans.on Knowledge and Data Engineering,2004,16(6):740-753.
  • 10Heinzelman W R,Chandrakasan A,and Balakrishnan H.Energy-efficient communication protocol for wireless microsensor networks.in Proceedings of the 33rd Annual Hawaii International Conference on System Sciences,Maui,HI,Jan.2000:1-10.

共引文献27

同被引文献19

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部