期刊文献+

混沌蚁群算法在瓦斯爆炸性检测仪中的应用

Application of chaotic ant colony algorithm in methane explosion detector
下载PDF
导出
摘要 针对瓦斯爆炸性检测仪传感器在实际生产中因构造和环境因素所产生的输入、输出非线性问题,将混沌蚁群算法和BP神经网络算法应用到瓦斯爆炸性检测仪中,提高瓦斯传感器精度。通过混沌蚁群算法对BP神经网络进行优化,改善BP神经网络收敛速度慢、容易陷入局部最优的缺点。实验结果表明:基于混沌蚁群优化算法的BP神经网络能够提高瓦斯检测系统的精度。 In the actual production,in the view of structural and environmental factors which bnng the problem of nonlinear input and output of the methane explosion detector,chaotic ant colony algorithm and BP neural network can be used in the methane explosion detector to improve the gas sensor precision. Shortcomings of slow rate of convergence and easy to fall into local optimum in the BP neural network can be improved by the optimization of chaotic ant colony algorithm. The experiment show that BP Neural Network based on chaotic ant colony algorithm optimization can improve the precision of gas detection system.
出处 《传感器与微系统》 CSCD 北大核心 2010年第11期135-137,共3页 Transducer and Microsystem Technologies
基金 辽宁省教育厅创新团队计划资助项目(2009T047)
关键词 瓦斯爆炸性检测仪 混沌蚁群算法 BP神经网络 methane explosion detector chaotic ant colony algorithm BP neural network
  • 相关文献

参考文献7

二级参考文献33

  • 1胡小兵,黄席樾.蚁群优化算法及其应用[J].计算机仿真,2004,21(5):81-85. 被引量:31
  • 2苏玲,赵冬梅,韩静.电力系统无功优化算法综述[J].现代电力,2004,21(6):40-45. 被引量:26
  • 3刘自发,葛少云,余贻鑫.基于混沌粒子群优化方法的电力系统无功最优潮流[J].电力系统自动化,2005,29(7):53-57. 被引量:74
  • 4朱太秀.电力系统优化潮流与无功优化[J].电网技术,1990,14(4):13-16. 被引量:23
  • 5Cheuug SO, Tam C M,Harris F C. Project dispute resolution satisfaction classification through neural networks[J]. Management in Engineering, 2000,16(1) : 70 - 79.
  • 6Forcellese A, Gabriealli F, Ruffini R. Effect of the training set size on springback control by neural network in an air bending process [J]. Material Processing technology, 1998,81(4) :493 - 500.
  • 7Stott B, Hobson E. Power system security control caculations using linear Programming [J]. IEEE Trans. Power App. Syst. , 1978, PAS- 97(5): 1713 - 1720.
  • 8Burchett R C, et al, Quadratically convergent optimal power flow [J]. IEEE 1984, PAS, 103(11). 3267 - 3275.
  • 9Colorni A, Dorigo M, Maniezzo V. Ant system for job-shop scheduling [J]. Belgian Journal of Operations Research, Statistics and Computer Science. 1994, 34(1): 39- 54.
  • 10Dorigo M, Maniezzo V, Colorni A. The ant system: optimization by a colony of cooperating agents [J]. IEEE Trans. on Systems, Man, and Cybernetics-Part B, 1996, 26(1): 29-41.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部