期刊文献+

图像空间中的鉴别型局部线性嵌入方法 被引量:2

Discriminative locally linear embedding in image space
原文传递
导出
摘要 为了更好地利用图像的空间关系和类信息来提高局部线性嵌入的性能,提出一种针对图像识别的鉴别型局部线性嵌入算法,并应用于人脸识别。首先,利用自适应图像欧氏距离构建近邻矩阵,计算得到的权重矩阵,再由权重矩阵重构特征,然后重构出数据内在的低维空间,最后利用线性判别分析引入类信息解决局部线性嵌入算法对测试样本无法重构以及分类的缺陷。实验基于FRAV2D和ORL人脸数据库,分析了图像欧氏距离和自适应图像欧氏距离算法提取图像空间信息的能力,并将本文提出的算法与目前已经广泛使用的人脸识别算法进行比较,其结果表明了鉴别型局部线性嵌入算法能更好地保留图像流形结构和类信息,显著提高人脸识别准确率。 In this paper, a discriminative locally linear embedding algorithm on image recognition, which considers spatial relationship of pixels and class information in order to improve the performance of locally linear embedding (LLE) , is presented. First, neighbor matrix, which is used to compute weight matrix, is constructed by adaptive image Euclidean distance, and features are reconstructed using the weight matrix. And then intrinsic lower-dimensional space of data is reconstructed. Finally, linear discriminant analysis is utilized to introduce class information to solve the defects that LLE can't reconstruct test samples and classify. Experiments are carried on FRAV2D and ORL databases. Comparing our proposed algorithm with popular algorithms in face recognition, these results show that a discriminative LLE can keep the best manifold structure and class information, and improve the accuracy of face recognition.
出处 《中国图象图形学报》 CSCD 北大核心 2010年第12期1776-1782,共7页 Journal of Image and Graphics
基金 国家自然科学基金项目(60872160) 东南大学科技基金项目(XJ2008320)
关键词 自适应图像欧氏距离 局部线性嵌入 线性判别分析 人脸识别 adaptive image euclidean distance locally linear embedding linear discriminant analysis face recognition
  • 相关文献

参考文献20

  • 1Belhumeur P N, Hespanha J P, Kriegman D J. Eigenface vs. Fisherface: Recognition using class specific linear projection [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7):711-720.
  • 2John S T, Nello C. Kernel Methods for Pattern Analysis [ M]. UK: Cambridge University Press, 2004.
  • 3Zhao Q J, Zhang D, Lu H T. Supervised LLE in ICA space for facial expression recognition[ C ]//Proceedings of International Conference on Neural Network and Brain. Washington DC, USA : IEEE Computer Society Press, 2005 : 1970-1975.
  • 4Yang M H. Extended Isomap for pattern classification [ C ]// Proceedings of the 8th International Conference on Artificial Intelligence Edmonton. Menlo Park, CA, USA: American Association for Artificial Intelligence, 2002:224-229.
  • 5Ridder D D, Loog M, Reinders M J T. Local fisher embedding [ C ]//Proceedings of International Conference on Pattern Recognition. Washington DC, USA: IEEE Computer Society Press, 2004:295-298.
  • 6ZhangJ P, Shen H X, Zhou Z H. Unified locally linear embedding and linear discriminant analysis algorithm ( ullelda ) for face recognition [J].Advances in Biometric Personal Authentioation. LNCS, 2004, 3338:209-307.
  • 7Colmenarez A, Frey B, Huang T S. Embedded face and facial expression recognition [ C ]//Proceedings of International Conference on Image Processing. Washington DC, USA: IEEE Computer Society Press, 1999:633-637.
  • 8Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding [ J]. Science, 2000, 290:2323-2326.
  • 9Ridder D, Olga K, Olga O. Supervised locally linear embedding [ C ]// Lecture Notes in Artificial Intelligence. Berlin, Heidelberg: Springer-Verlag, 2003:333-341.
  • 10He X F, Cai D, Yan S C, et al. Neighborhood preserving embedding [ C ]//Proceedings of the 10th IEEE International Conference on Computer Vision. Washington DC, USA: IEEE Computer Society Press, 2005 : 1208-1213.

同被引文献29

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部