期刊文献+

光顺化有限元技术在电磁场数据处理中的应用 被引量:1

Application of Smoothing Finite Element Technique in Processing Measured Data of Electromagnetic Fields
下载PDF
导出
摘要 介绍一种新的数值方法,并用于平面电磁场离散测量数据的再现与微分。该方法结合最佳逼近、有限元分片插值与光顺技巧,对测量向量各独立分量进行处理,改善了原离散点构成的解空间的光滑性,提高了解尤其是导数场的精度,在测量区域内再现了光顺向量函数及连续的导数。因对测点分布及边界条件无特殊要求,此方法可用于平面电磁场的研究。实验与应用表明该方法可有效地抑制输入误差的影响,具有较高的计算精度与数值稳定性。 A new numerical method is presented for representing and differentiating discrete electromagnetic field data measured. A smoothing technique is combined with optimum approximation and finite element piece wise interpolation in the method, It can simultaneously process measured vector components, improve smoothing capability of solution, space composed of original discrete points and increase the accuracy of the solution, especialy its derivatives. The represented vectorial functions are smooth and their derivatives are continuous throughout the entire measured region. As the distribution of measured points and boundary condition need not be specificed, the technique is applicable to the 2D electric magnetic fields, The results from the test and application demonstrate its effectiveness for restraining the influence of input errors (experimental scatter) and its better calculation accuracy and numerical stability.
出处 《计量学报》 CSCD 北大核心 1999年第2期136-142,共7页 Acta Metrologica Sinica
基金 国家自然科学基金 国家博士点基金
关键词 电磁场 测量数据 光顺化 有限元 数据处理 Electromagnetic field Measured data Smoothing Finite element
  • 相关文献

参考文献5

二级参考文献1

  • 1苏翼林,材料力学.下,1980年

共引文献2

同被引文献10

  • 1杨玉波,王秀和,张鑫,贺广富.磁极偏移削弱永磁电机齿槽转矩方法[J].电工技术学报,2006,21(10):22-25. 被引量:86
  • 2Grabner C, Schmidt E. Torque calculation of electrical machines based on distributions of surface forces along the stator boundary as well as volume forces inside conducting and iron domains[C]. IEEE Electric Machines and Drives Conf., IEMDC'03, 2003,1: 595-600.
  • 3David G Dorrell, Mircea Popescu, Malcolm I McGilp. Torque calculation in finite element solutions of electrical machines by consideration of stored energy[J]. IEEE Trans. Magnetics, 2006, 42(10):3431-3433.
  • 4Ramon Castillo, Jose M Canedo. A 2-D finite-element formulation for unambiguous torque calculation[J]. IEEE Trans. Magnetics, 2008, 44(3):373-376.
  • 5汤蕴谬.电机内的电磁场[M].2版.北京:科学出版社,1998.
  • 6Lieven Vandevelde, Johan J C Gyselinck, Jan A A Melkebeek. Long-range magnetic force and deformation calculation using the 2D finite element method[J]. IEEE Trans. Magnetics, 1998, 34(5): 3540-3543.
  • 7Benhama A, Williamson A C, Reece A B J. Virtual work approach to the computation of magnetic force distribution from finite element field solutions[J]. IEE Proc-Electr. Power Appl, 2000, 147(6): 437-442.
  • 8Lieven Vandevelde, Jan A A Melkebeek. A survey of magnetic force distributions based on different magnetization models and on the virtual work principle[J]. IEEE Trans. Magnetics, 2001, 37(5): 3405-3409.
  • 9Motoasca T Emilia, Hans Blok, Martin D Verweij, et al. Electromagnetic forming by distributed forces in magnetic and nonmagnetic materials[J]. IEEE Trans. Magnetics, 2004, 40(5):3319-3330.
  • 10Luo Wei, Li Zhiqiang. A convolution method to compute magnetic force distributions[C]. Proc. Of the 13th Biennial IEEE Conf. on Electromagnetic Field Computation, Athens, Greece, 2008:223.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部