期刊文献+

一种低复杂度振动信号检测分类算法 被引量:1

Algorithm for Vibrating Signal Detection and Classification with Low Complexity
下载PDF
导出
摘要 低复杂度的振动信号常规峰度检测算法只能检测人员入侵行为,不能检测车辆入侵行为。根据噪声数据与车辆入侵数据特点,结合时间窗和马尔柯夫过程概念,提出了基于改进峰度的振动信号检测分类算法。该算法引入背景噪声的平均能量,利用包含比例因子p和异常突变阈值r的分段函数代替信号能量,可以避免毛刺信号干扰,检测并区分人员入侵和车辆入侵而不需要任何先验条件。试验表明,该算法具有复杂度低,资源要求低,漏警率低的特点。 A conventional kurtosis algorithm for the vibrating signal is low-complexity.It does not affect vehicle intrusion detecting but only human intrusion detecting.Combined with the timing window and the Markov process,an improved algorithm based on the principle of kurtosis is proposed.The algorithm adopts the average energy of background noise replaces the signal energy with the piecewise function contain of the scale factor p.And the abnormal mutation threshold r can avoid the glitch signal interference and classify human intrusion and vehicle intrusion without the requirement of any prior statistical knowledge of signals.Experimental results show that the novel algorithm is more efficient in the signal detection and classification and has advantages of low complexity,low resource requirement and low false alarm rate.
出处 《数据采集与处理》 CSCD 北大核心 2010年第6期689-695,共7页 Journal of Data Acquisition and Processing
基金 国家高技术研究发展计划(“八六三”计划)(2006aa01z216)资助项目 上海市科委科技攻关基金(07dz15011)资助项目
关键词 传感网 振动信号 检测分类 峰度 sensor network vibrating signal detection and classification kurtosis
  • 引文网络
  • 相关文献

参考文献6

  • 1Romer K,Mattern F.The design space of wireless sensor network[J].IEEE Wireless Communications,2004,11(6):54-61.
  • 2Hadjileontiadis L J,Douka E.Kurtosis analysis for crack detection in thin isotropic rectangular plates[J].Engineering Structure,2007,29(9):2353-2364.
  • 3Guvenc I,Sahinoglu Z.Threshold selection for UWB TOA estimation based on kurtosis analysis[J].Communication Letters,2005,9(12):1025-1027.
  • 4Du Q,Kopriva I.Automated target detection and discrimination using constrained kurtosis maximization[J].IEEE Geoscience and Remote Sensing Letter,2008,5(1):38-42.
  • 5De Roo R D,Sidharth Misra,Christopher S.Ruf sensitivity of the kurtosis statics as a detector of pulsed sinusoidal RFI[J].IEEE Transactions on Geosciences and Remote Sensing,2007,45(7):1938-1946.
  • 6Joanes D N,Gill C A.Comparing measures of sam-pie skewness and kurtosis[J].Journal of the Royal Statistical Society,1998,47(1):183-189.

同被引文献10

  • 1况鹰,李桂清,姚艺,等.基于Kincct运动捕获的三维虚拟试衣[c]//Chinagraph’2012论文集.广州:华南理工大学,2012:1-6.
  • 2Kevin C TofcL 3 Reasons MicrosoR's Kinectct is Hot, Hot, Hot! [EB/OL].(2010-12.30 )[2016-05-30], http://gaom.com/2010/11!30~kinect-sales.are.hot/.
  • 3Lynda Lysandra.基于Kinect的真人试衣系统设计与实现[D].厦门:厦门大学,2015:25-42.
  • 4Xiangxin Zhu, Deva Ramanan. A. Face Detection, POse Estimation, and Landmark Localization in the Wild [C]// Computer V'mion and Pattern Recognition (CVPR), 2012 IEEE Conference, USA: IEEE, 2012: 2879-2886.
  • 5Wang J, Liu Z, Wu Y, et al. Mining actionlet ensemble for action recognition with depth cameras [C]// Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. USA: IEEE, 2012: 1290-1297.
  • 6Amir Abbas Zadpoor, Gianni Campoli, Harrie Weinans. Neural network prediction of load from the morphologyof trabecular bone [J]. Applied Mathematical Modelling: (S0307-904X), 2012, 37(7): 5260-5276.
  • 7Run Ze Wu, Ying He, Liang Rui Tang. Traffic Prediction Based on Grey Model Optimized by Buffer Operator and PSO in Communication Network for Electric Power [J]. Applied Mechanics and Materials (S1660-9336), 2013, 397(9): 1994-1998.
  • 8李伟,袁亚南,牛东晓.基于缓冲算子和时间响应函数优化灰色模型的中长期负荷预测[J].电力系统保护与控制,2011,39(10):59-63. 被引量:23
  • 9赵海媚,林振生,彦虹羽,苏宏阳.基于Kinect的3D实时虚拟试衣系统的研究[J].电子技术与软件工程,2015(20):69-71. 被引量:4
  • 10许艳凰,姚俊峰,杨宝容,王其棣,孙玉珍.兰花开花过程三维模拟系统研究[J].系统仿真学报,2015,27(10):2546-2552 2559. 被引量:2

引证文献1

二级引证文献14

;
使用帮助 返回顶部