期刊文献+

基于小波包最优基的语音信号压缩方法 被引量:5

Speech Signal Compression Method Based on Wavelet Packet Best-Basis
下载PDF
导出
摘要 提出了基于方差准则的小波包最优基压缩方法。首先选择一个合适的小波函数及分解层次对语音信号进行小波包分解。然后基于方差准则确定小波包最优基,保留语音信号的重要特征,实现信号压缩。最后对小波包最优基中的小波系数进行量化、编码,以便于信号在信道中传输。在接收端进行译码,重构压缩后的语音信号,观察压缩效果。实验中对语音信号采用不同方法进行了压缩实验,验证了本文算法的可行性。实验结果表明,本文算法的搜索量小,易于实现,压缩效果比较明显。 The compression method for the wavelet packet best-basis is presented based on variance criterion. Firstly,a suitable wavelet function and decomposition levels are selected and the wavelet packet decomposition is carried out for speech signal.Then,wavelet packet best-basis is determined based on the variance criterion,so that speech signal characteristics are retained and the signal is compressed.Finally,wavelet coefficients are quantized and encoded in the wavelet packet best-basis for transmitting the signal in the channel.At the receiving terminal,the signal is decoded and reconstructed for observing a compression effect.Different methods are used for speech signals to execute compression test.Experiments verify the feasibility of the algorithm.Results show that the algorithm is easy to be realized,and its search quantity is small.The compression effect of the algorithm is visible.
出处 《数据采集与处理》 CSCD 北大核心 2010年第6期746-750,共5页 Journal of Data Acquisition and Processing
关键词 小波包最优基 语音信号压缩 方差准则 wavelet packet best-basis speech signal compression variance criterion
  • 相关文献

参考文献8

  • 1Coifman R R,Wickerhauser M V.Entropy-based algorithms for best basis selection[J].IEEE Trans Information Theory,1992,238(3):713-718.
  • 2Zhang H.A novel wavelet transform technique for on-line partial discharge measurements.1.WT denoising algorithm[J].IEEE Transactions on Dielectrics and Electrical Insulation,2007,14(1):3-14.
  • 3Norris J A.Englehart K B,Lovely D F.Signal compression using zero-trees of wavelet coefficients[J].Medical Engineering&Physics,2003,25(9):739-746.
  • 4徐长发 李国宽.实用小波方法[M].武汉:华中科技大学出版社,2004..
  • 5Reis M S,Saraiva P M,Bakshi B R.Multiscale sta-tistical process control using wavelet packets[J].AICHE Journal,2008,54(9):2366-2378.
  • 6Goswami J,C.小波分析理论、算法及其应用[M].许天周,黄春光,译.北京:国防工业出版社,2007:167-170.
  • 7杨帮华,颜国正,严荣国.脑机接口中基于小波包最优基的特征抽取[J].上海交通大学学报,2005,39(11):1879-1882. 被引量:20
  • 8Barkana B D,Barkana T.A compression algorithm based on the polarity of the speech signal[C] //Inno-vations and Advanced Techniques in Systems,Computing Sciences and Software Engineering.New York,USA:Springer Science & Business Media B V,2008:127-130.

二级参考文献12

  • 1张毅刚,郁惟镛,黄成军,左问.基于小波包及隐式马尔科夫模型的局放信号去噪[J].上海交通大学学报,2004,38(8):1269-1272. 被引量:9
  • 2Coifman R R, Wickerhauser M V. Entropy based algorithms for best basis selection [J]. IEEE Trans Information Theory, 1992, 238 (3): 713- 718.
  • 3Blankertz B, Müller K R, Curio G, et al. The BCI competition 2003: Progress and perspectives in detection and discrimination of EEG single trials [J].IEEE Trans on Biomedical Eng, 2004, 51(6): 1044-1051.
  • 4Mensh B D, Werfel J, Seung H S. BCI competition 2003-data set Ia: Combining gamma-band power with slow cortical potentials to improve single-trial classification of electroencephalographic signals [J].IEEE Trans on Biomedical Eng, 2004, 51(6): 1052-1056.
  • 5Neumann N, Kübler A. Training locked-in patients:A challenge for the use of brain-computer interfaces [J]. IEEE Trans on Neural Systems and Rehabilitation Eng, 2003, 11(2): 169-172.
  • 6Donchin E, Spencer K M, Wijesinghe R. The mental prosthesis: Assessing the speed of a P300-based brain-computer interface [J]. IEEE Trans on Rehabilitation Eng, 2000, 8(2): 174-179.
  • 7Dornhege G, Blankertz B, Curio G. Speeding up classification of multi-channel brain-computer spatial patterns for slow cortical potentials [A]. Proceedings of the 1st intertional IEEE EMBS Conference on Neural Engineering [C]. Capri Island, Italy:IEEE, 2003. 594-597.
  • 8Choi Kyoung ho, Sasaki M. Brain-wave bio potentials based mobile robot control : Wavelet-neural network pattern recognition approach [A]. Proceedings of the IEEE International Conference on Systems,Man and Cybernetics [C]. Tucson, AZ: IEEE,2001. 322- 328.
  • 9Chen C W, Ju M S, Lin C C. Real-time identification of μ wave with wavelet neural networks [A].Proceedings of the 1st International IEEE EMBS Conference on Neural Engineering [C]. Capri Island, Italy: IEEE, 2003. 218-220.
  • 10Graimann B, Huggins J E, Levine S P, et al. Toward a direct brain interface based on human subdural recordings and wavelet-packet analysis [J]. IEEE Trans on Biomedical Eng, 2004, 51(6): 954-962.

共引文献83

同被引文献50

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部