期刊文献+

基于LLE低维嵌入的高光谱影像分类

Classification of Hyperspectral Images Based on LLE Lower Dimensionality Embedding
下载PDF
导出
摘要 针对高光谱数据中内在的非线性流行结构,分析了LLE低维嵌入算法的基本原理,给出了该算法的计算步骤。介绍了模糊ISODATA分类算法的基本思想,在计算目标函数中,利用测地距离代替欧氏距离,对模糊ISODATA分类算法进行改进。利用两套PHI高光谱影像数据,在LLE低维嵌入结果上实现了ISODATA分类实验。结果表明:LLE低维嵌入后的数据能够降低ISODATA影像分类的迭代次数与计算时间,提高分类的效率;与原始ISODATA分类算法相比,改进的ISODATA分类算法能够更好地挖掘类别之间的自组织关系,提高分类的可靠性。 According to the nonlinear manifold structures that exists in hyperspctral images inherently,basic principles of LLE lower dimensionality embedding algorithm were analyzed,and then,the computing process of the algorithm was given.Principles of fuzzy ISODATA classification algorithm were given.For the ISODATA classification algorithm,Geodesic Distance was proposed to replace the Euclid Distance to compute target function.Two PHI hyperspectral image datasets were used,and ISODATA classification experiments were done on the LLE lower dimensionality embedding data.Experimental results proved that LLE lower dimensionality embedding data could reduce the iteration and computing time of ISODATA classification,meanwhile,compared with original ISODATA classification algorithm,the improved algorithm could mine the self-organizing relationships between different classes to improve the reliability of classification results.
出处 《海洋测绘》 2010年第6期48-50,70,共4页 Hydrographic Surveying and Charting
基金 国家自然科学基金(40901179) 矿山空间信息技术国家测绘局重点实验室开放研究基金(KLM200904)
关键词 高光谱影像 局部线性嵌入算法 ISODATA 分类 测地距离 hyperspectral image LLE ISODATA classification geodesic distance
  • 相关文献

参考文献8

  • 1董广军.高光谱影像流形降维与融合分类技术研究[D].郑州:解放军信息工程大学,2008.
  • 2Domeniconi C, Peng J, and Gunopulos D. Locally adaptive metric nearest-neighbor classification [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24 ( 9 ) : 1281 - 1285.
  • 3徐雪松,张宏,刘凤玉.基于核函数距离测度的LLE降维及其在离群聚类中的应用[J].仪器仪表学报,2008,29(9):1996-2000. 被引量:5
  • 4Pedrycz W, Waletzky J. Fuzzy Clustering with Partial Supervision [ J ]. IEEE Transactions on Cybernetics, 1997,27(5) : 787 -795.
  • 5Silva V, Tenenbaum J. Unsupervised learning of curved manifolds [R]. Proceedings of the MSRI workshop on nonlinear estimation and classification,2002.
  • 6李宏,谢政,向遥,吴敏.一种采用LLE降维和贝叶斯分类的多类标学习算法[J].系统工程与电子技术,2009,31(6):1467-1472. 被引量:4
  • 7黄健元.模糊ISODATA聚类分析方法的改进[J].南京航空航天大学学报,2000,32(2):179-183. 被引量:24
  • 8Charles M. Bachmann. Modeling Data Manifold Geometry in Hyperspectral Imagery [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING ,2004,43 ( 3 ) :440 - 450.

二级参考文献24

  • 1邓星亮,吴清.LLE算法及其应用[J].兵工自动化,2005,24(3):65-66. 被引量:8
  • 2张东波,王耀南.FCM聚类算法和粗糙集在医疗图像分割中的应用[J].仪器仪表学报,2006,27(12):1683-1687. 被引量:32
  • 3Elisseeff A, Weston J. A kernel method for multi-labeled classifcation[M]. Dietterich T G, Becker S, Ghahramani Z Eds. Advances in Neural Information Processing Systems 14. MIT Press, Cambridge, MA, 2002:681-687.
  • 4McCallum A. Multi-label text classifcation with a mixture model trained by EM[C]//Working Notes of the AAAI Workshop on Text Learning, Orlando, 1999 : 577 - 584.
  • 5Amanda Clare, King Ross D. Knowledge discovery in multi-label phenotype data[C]//Proc.of ECML/PKDD, 2001:462 - 470.
  • 6Comite F D, Gilleron R, Tommasi M. Learning multi-label alternating decision tree from texts and data[C]//Perner P, Rosenfeld A Eds, Lecture Notes in Computer Science 2734,Springer, Berlin, 2003 : 35 - 49.
  • 7Li Hong, Zhao Rui, Chen Jian-er, et al. Research on multi-labeled decision trees[C]//ADMA, LNAI 4093, Springer-Verlag Berlin Heidelberg, 2006 : 247 - 254.
  • 8Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and an application to boosting[J].Journal of Computer and System Sciences, 1997,55(1) : 119 - 139.
  • 9Zhang Minling, Zhou Zhihua. ML-kNN: A lazy learning approach to multi-label learning[J]. Pattern Recognition (PRJ), 2007, 40(7): 2038-2048.
  • 10Brian F, Dejan K. Non-linear embedding and the underlying dirnensionality of reflectance spectra and chromaticity histograms[C]//The IT&SID Ninth Color Imaging Conference: Color Science, Systems and Applications. Scottsdale: Society for Imaging Science and Technology, 2001 : 126 - 129.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部