摘要
To overcome the default of single search tendency, the ants in the colony are divided into several sub-groups. The ants in different subgroups have different trail information and expectation coefficients. The simulated annealing method is introduced to the algorithm. Through setting the temperature changing with the iterations, after each turn of tours, the solution set obtained by the ants is taken as the candidate set. The update set is obtained by adding the solutions in the candidate set to the previous update set with the probability determined by the temperature. The solutions in the candidate set are used to update the trail information. In each turn of updating, the current best solution is also used to enhance the trail information on the current best route. The trail information is reset when the algorithm is in stagnation state. The computer experiments demonstrate that the proposed algorithm has higher stability and convergence speed.
To overcome the default of single search tendency, the ants in the colony are divided into several sub-groups. The ants in different subgroups have different trail information and expectation coefficients. The simulated annealing method is introduced to the algorithm. Through setting the temperature changing with the iterations, after each turn of tours, the solution set obtained by the ants is taken as the candidate set. The update set is obtained by adding the solutions in the candidate set to the previous update set with the probability determined by the temperature. The solutions in the candidate set are used to update the trail information. In each turn of updating, the current best solution is also used to enhance the trail information on the current best route. The trail information is reset when the algorithm is in stagnation state. The computer experiments demonstrate that the proposed algorithm has higher stability and convergence speed.
基金
Project supported by the National Natural Science Foundation of China (Grant No.50608069)