摘要
主要在E*具有KK性质等条件下证明了T存在不动点当且仅当由修正的Ishikawa迭代程序xn+1=tnTnyn+(1-tn)xn yn=snTnxn+(1-sn)xn所定义的序列{xn}弱收敛且xn-Txn→0.设C是一致凸Banach空间E的非空有界闭凸子集,T:C→C是渐近非扩张映射.
Let C be a nonempty bounded closed convex subset of uniformly convex Banach space.Let T:C→C be an asymptotically nonexpansive mapping.It is shown that under some suitable conditions such as thatE* satisfies KKproperty,Thas fixed point if and only if the modifiedIshikawaiterative sequences {xn}defined by xn+1=tnTnyn+(1-tn)xn yn=snTnxn+(1-sn)xn converges weakly and xn-Txn→0.
出处
《淮阴师范学院学报(自然科学版)》
CAS
2010年第5期377-381,共5页
Journal of Huaiyin Teachers College;Natural Science Edition
基金
国家自然科学基金资助项目(10571150)