期刊文献+

逆时深度偏移成像方法及其在CPU/GPU异构平台上的实现 被引量:9

Reverse-time Depth Migration Imaging and Its Application at CPU/GPU Platform
下载PDF
导出
摘要 逆时深度偏移的优点可以用来对全波场逆时外推,使得来自高角度反射界面的反射波。甚至来自超过90°反射界面的反射波精确成像。逆时深度偏移涉及到2个重要问题:精确且高效的逆时波场外推算法及反射波的成像条件。文中提出了修改的激励时间成像条件:在反射界面处,反射波出发时等于入射波到达时。认为用反射界面上某成像点与法线方向对称的波矢量所定义的波场进行相关成像是完善的成像条件。边界条件的处理借鉴Robert提出的随机边界,这可以提高波场外推算法的并行性。关于存储,认为牺牲一次正向波场外推,先把波场正传到最大时间,然后与观测波场同时逆时外推并成像,在GPU/CPU计算机平台上是比较合适的方案,这样就彻底抛弃了正向外推波场的存储。数值试验验证了分析的正确性。 The advantage of reverse time migration (RTM) is that it can accurately image the reflectors beyond 90° dipping angles. RTM uses the full wave equation to extrapolate the wave field. Reverse time depth migration involves two key issues: accurate and efficient reverse time wave field extrapolation algorithm and reflector imaging conditions. We give modified exciting time imaging conditions, that is, at reflection boundaries, the arriving time of the incident wave equals to the taking-off time of the reflection wave. It is stated that, it is applicable to use the wave field defined by wave vector symmetric to normal direction at an imaging point on reflection boundary for imaging. For disposal of boundary conditions, random boundary presented by Robert is used to improve concurrency of wave field extrapolation algorithm. With respect to storage, we believe that, sacrificing once forward wave field extrapolation, forward propagating wave field to the maximum time and then reverse time extrapolating the wave field together with observation wave field simultaneously and imaging at GPU/CPU computer platform is a suitable method. Therefore, the storage of forward extrapolation wave field is abandoned completely. Finally, numerical tests prove its correctness.
出处 《岩性油气藏》 CSCD 2010年第F07期36-41,共6页 Lithologic Reservoirs
关键词 逆时偏移 高阶有限差分 GPU/CPU平台 随机边界条件 reverse time migration high-order finite-difference scheme GPU/CPU system random scattering boundary condition
  • 相关文献

参考文献12

  • 1Whitemore N D. Migration : Fundamental issues and future developments [J]. Expanded Abstracts of 52nd Annual International Meeting, SEG, 1982 : 520.
  • 2Claerbout J F. Toward a unified theory of reflector mapping [J ]. Geophysics, 1971,36 (3) : 467-481.
  • 3Mulder W, Plessix R. One-way and two-way wave-equation migration [J]. Expanded Abstracts of 73rd Annual International Meeting, SEG, 2003 : 881-884.
  • 4Yoon K, Marfurt K J. Reverse-time migration using the Poynting vector [J]. Exploration Geophysics ,2006,37 : 102-107.
  • 5Fletcher R, Fowler P, Kichenside P, et al. Suppressing unwanted internal reflections in prestack reverse-time migration [J ]. Geophysics, 2006,71 (6) :E79-E82.
  • 6Liu Faqi,Zhang Guanquan, Morton S A, et al. Reverse-time migration using one-way wavefield imaging condition [J]. Expanded Abstracts of 77th Annual International Meeting, SEG, 2007: 2 170-2 174.
  • 7Symes W W. Reverse time migration with optimal check pointing[J]. Geophysics, 2007,72 (5) : SM213-SM221.
  • 8Clapp R G. Reverse time migration with random boundaries [J ]. Expanded Abstracts of 79th Annual International Meeting, SEG, 2009:2 809-2 812.
  • 9Dablain M A. The application of high-order differencing to the scalar wave equation [J ].Geophysics, 1986,51 ( 1 ) : 54-66.
  • 10Mahesh K. A family of High Order Finite Difference Schemes with Good Spectral Resolution[J]. Journal of computational physics, 1998, 145 : 332-358.

同被引文献87

  • 1薛东川,王尚旭.波动方程有限元叠前逆时偏移[J].石油地球物理勘探,2008,43(1):17-21. 被引量:35
  • 2杨子川.塔河油田碳酸盐岩储层预测技术与应用[J].勘探地球物理进展,2004,27(6):432-439. 被引量:54
  • 3Whitmore N D. Iterative depth migration by back- ward time propagation[J]. Expanded Abstracts of 53ra Annual Internat SEG Mtg, 1983,827-830.
  • 4McMechan G A. Migration by extrapolation of time- dependent boundary values[J]. Geophysical Prospec- ting, 1983,31 (3) :413-420.
  • 5Loewenthal D, Mufti I R. Reversed time migration in spatial frequency domain[J]. Geophysics, 1983, 48 (5) :627-635.
  • 6Yoon K, Marfurt K J, Starr W. Challenges in re-verse-time migration[J]. Expanded Abstracts of 74ta Annual Internat SEG Mtg,2004,1057-1060.
  • 7Dussaud E. Computational strategies for reverse- time migration[J]. Expanded Abstracts of 78th An- nual Internat SEG Mtg, 2008,2267-2271.
  • 8Foltinek D, Eaton D, Mahovsky J, et al. Industrial- scale reverse time migration on GPU hardware[J]. Expanded Abstracts of 79th Annual Internat SEG Mtg, 2009,2789-2793.
  • 9Araya-Polo M,Rubio F,de la Cruz R,et al. 3D seis- mic imaging through reverse-time migration on hom- ogeneous and heterogeneous multi-core processors [J]. Journal of Scientific Programming, 2009,17 (1/ 2) :186-198.
  • 10Micikevicius P. 3D finite difference computation on GPUs using CUDA[J]. Proceedings of 2nd Work- shop on General Purpose Processing on Graphics Processing Units, 2009,79-84.

引证文献9

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部