期刊文献+

基于新双模融合算法的情感检测系统

Emotion Detection System Based on New Double-Mode Fusion Algorithm
下载PDF
导出
摘要 针对传统的分类器融合存在的诸多问题,提高情感检测正确率,采用双模态(音频、视频)参数提取,选择差异性强的组合小波神经网络(MWNN)与混合高斯模型(GMMs)分类器.在语音韵律、音质特征与人脸几何特征提取后,对提取后的特征用主元分析法(PCA)进行降维,对分类器进行匹配化输出,最后引入GA算法来搜索最优的融合系数向量,充分发挥各分类器本身对特定情感的敏感特性.实验证明,与传统的融合算法相比,经匹配化的GA融合算法将识别率提高了4%~10%,具有更高的识别率与更强的泛化能力. Aiming to solve the problems existing in traditional classifier fusion and improve the correct rate of emotion detection system, feature parameters were extracted from both video and audio, and module wavelet neural network (MWNN) and Gaussian mixture models (GMMs) were chosen as classifiers to maintain diversity for effective fusion. Prosodic features of speech signal and geometric features of facial expression image were extracted after preprocessing, and then principle component analysis (PCA) was adopted to reduce the dimensions of eigenvectors. After the outputs of MWNN and GMMs were matched,genetic algorithm (GA) was introduced to search for the optimal fusion coefficient vector, which would give full play of the two different classifiers' susceptibility to specific emotion. The experinental results show that, compared with the traditional fusion algorithm, the output-matched GA fusion algorithm has higher recognition rate and stronger generation ability, improving recognition rate by about 4% to 10%.
出处 《天津大学学报》 EI CAS CSCD 北大核心 2010年第12期1067-1072,共6页 Journal of Tianjin University(Science and Technology)
基金 国家自然科学基金资助项目(60805002)
关键词 情感语句 人脸表情 基因遗传算法 分类器匹配 双模融合 情感检测 emotion speech facial expression genetic algorithm classifiers matching double-mode fusion emotion detection
  • 相关文献

参考文献12

  • 1Fragopanagos N,Taylor J G. Emotion recognition in human-computer interaction [J]. Neural Networks, 2005, 18 (4) :389-405.
  • 2Bosch L. Emotions speech and the ASR framework[J]. Speech Communication,2003,40 (1/2) :213-225.
  • 3Cowie R,Douglas-Cowie E,Tsapatsoulis N,et al. Emotion recognition in human-computer interaction [J]. IEEE Signal Processing Magazine,2001,18 (1) : 32-80.
  • 4Morrison D,De Silva L C. Voting ensembles for spoken affect classification[J]. Journal of Network and Computer Applications ,2007,30 (4) : 1356-1365.
  • 5France D J,Shiavi R G,Silverman S,et al. Acoustical properties of speech as indicators of depression and suicidal risk[J]. IEEE Trans BiomedEng,2000,47 (7) :829- 837.
  • 6Morrison D,Wang Ruili, De Silva L C. Ensemble methods for spoken emotion recognition in call-centres[J]. Speech Communication,2007,49 (2) :98-112.
  • 7Bhatti M W, Wang Y, Guan L. A neural network approach for human emotion recognition in speech[C]//IEEE In- ternational Symposium on Circuits and System. Canada, 2004:181-184.
  • 8Murry I R,Amott J L. Applying an analysis of acted vocal emotions to improve the simulation of synthetic speech[J]. Computer Speech and Language ,2008,22 (2) : 107-129.
  • 9林奕琳,韦岗,杨康才.语音情感识别的研究进展[J].电路与系统学报,2007,12(1):90-98. 被引量:33
  • 10Huang Yongming, Zhang Guobao, Xu Xiaoli. Speech emotion recognition research based on wavelet neural network for robot pet[C]//5th International Conference on Intelligent Computing. Korea,2009:993-1000.

二级参考文献47

  • 1陶建华,谭铁牛.数字化人类情感——和谐人机交互环境中的情感计算[J].微电脑世界,2004(1):29-32. 被引量:12
  • 2詹永照,曹鹏.语音情感特征提取和识别的研究与实现[J].江苏大学学报(自然科学版),2005,26(1):72-75. 被引量:16
  • 3Roy D,Pentland A.Automatic Spoken Affect Classification and Analysis[A].International Conference on Automatic Face and Gesture Recognition[C].1996.363-367.
  • 4Park C-H,Lee D-W,Sim K-B.Emotion Recognition of Speech Based on Rnn[A],ICMLC 2002[C],2002.
  • 5Park C-H,Sim K-B,Emotion Recognition and Acoustic Analysis from Speech Signal[A].IJCNN 2003[C].2003.2594-2598.
  • 6Lee C M,Yildirim S,Bulut M,et al.Emotion Recognition Based on Phoneme Classes[A].ICSLP 2004[C].2004.889-892.
  • 7Sato H,Mitsukura Y,Fukumi M,et al.Emotional Speech Classification with Prosodic Prameters by Using Neural Networks[A].ANZⅡS 2001[C].2001.
  • 8Dellaert F,Polzin T,Waibel A.Recognizing Emotion in Speech[A].ICSLP'96[C].1996.1970-1973.
  • 9Cowie R,Douglas-Cowie E.Automatic Statistical Analysis of the Signal and Prosodic Signs of Emotion in Speech[A].ICSLP'98[C].1998.555-558.
  • 10Ververidis D,Kotropoulos C,Pitas I.Automatic Emotional Speech Classification[A].ICASSP'04[C].2004.593-596.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部