期刊文献+

基于多分类支持向量机的基因表达系列分析

Analysis of SAGE data using multi-class classification and support vector machine
下载PDF
导出
摘要 基因表达系列分析(Serial analysis of gene expression,SAGE)是一种基因表达数据,反映了细胞内的动态变化。模式识别和可视化方法是分析SAGE数据的基本工具,但是由于缺乏描述数据的统计特性,传统的聚类分析技术不适用于SAGE数据的分析。本文提出了一种基于多分类和支持向量机的SAGE数据的分析法。经过对模拟数据和人类癌症SAGE数据的分析,基于径向基核函数的多分类支持向量机算法"一对一"(one-against-one,OAO)算法提供了比PoissonC和PoissonS更好的分类结果。 Serial analysis of gene expression(SAGE) is a powerful technique for comprehensive gene-expression profiling.Pattern discovery and visualization have become fundamental approaches to analyzing SAGE data.However,SAGE data have been poorly exploited by clustering analysis owing to the lack of appropriate statistical methods that consider their specific properties.Traditional clustering techniques may not suitable for SAGE data analysis.Based on multi-class classification methods and support vector machine,this paper presents a novel clustering algorithm for SAGE data analysis.Tested on synthetic and experimental SAGE data,this algorithm demonstrates several advantages over traditional clustering algorithm.The results indicate that,one-against-one with radial-basis function network kernel offers significant advantages compared to PoissonC and PoissonS.
出处 《生物信息学》 2010年第4期356-358,363,共4页 Chinese Journal of Bioinformatics
基金 国家自然科学基金(60671061)
关键词 基因表达系列分析 多分类 支持向量机 核函数 Serial analysis of gene expression multi-class classification support vector machine kernel function
  • 相关文献

参考文献17

  • 1V.E.Velculescu,L.Zhang,B.Vogelstrin and K.W.Kinzler.Serial Analysis of Gene Expression[J].Science,1997,276:1268-1272.
  • 2Adams M D,Kelley J M,Gocayne J D,et al.Complementary DNA sequencing:expressed sequence tags and human genomeprojec[J].Science,1991,252:1651-1656.
  • 3Liang P,Pardee AB.Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction[J].Science,1992,257:967-971.
  • 4J.T.L.Wang,B.A.Shapiro,and D.Shasha.Pattern Discovery in Biomolecular Data:Tools,Techniques,and Applications[M].New York,USA:Oxford University Press,1999.
  • 5R.T.Ng,J.Sander,and M.C.Sleumer.Hierarchical cluster analysis of SAGE data for cancer profiling,Proc.Of Workshop on Data Mining in Bioinformatics(BIOKDD01)[C].San Francisco,USA:2001,65-72.
  • 6C.Becquet,S.Blachon,B.Jeudy,J.Boulicaut,and O.Gandrillon O.Strong-association-rule mining for large-scale gene-expression data analysis:a case study on human SAGE data[J].Genome Biology,2002,3(12):R67.1-16.
  • 7Haiying Wang,Huiru Zheng,and Francisco Azuaje.Poisson-Based Self-Organizing Feature Maps and Hierarchical Clustering for Serial Analysis of Gene Expression Data[J].IEEE Transactions on Computational Biology and Bioinformatics,USA:2007,4(2):163-175.
  • 8Vapnik VN.The nature of statistical learning theory[M].New York,USA:Springer-Verlag,2000.
  • 9J.Weston and C.Watkins.Multi-class support vector machines[C].Department of Computer Science,Royal Holloway University of London Technical Report,SD2TR298204,1998.
  • 10K.Crammer and Y.Singer.On the Learnability and Design of Output Codes for Multicalss Problems[J].Machine Learning,2002,47:201-233.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部