摘要
本文证明了滞后型泛函微分方程(dx)/(dt)=f(x(t-1)) (E)存在4/3-周期解的两个定理.一个主要结果如下:假如f(x)是[a-1,a+1]上连续函数,且满足:(i)-f(x)=f(y),y=2a-x,(?)x∈[a-1,a]:(ii):f(x)=f(y),y=2a+1-x,(?)x∈[a,a+1]:(iii)f(x)>0,(?)x∈(a,a+1)和(?).则方程(E)存在4/3-周期解x(t),且x(-1+k4/3)=a+1,x(-2/3+k(4/3))=a,x(-1/3+k(4/3))=a-1,x(k(4/3))=a,k=0,1,2,….
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
1990年第5期694-711,共18页
Acta Mathematica Sinica:Chinese Series