期刊文献+

典型折叠充气管的建模修正与展开仿真 被引量:7

Modeling Modification and Deployment Simulation of Inflatable Tube with Typical Folded Configurations
下载PDF
导出
摘要 本文分别研究了Z形、卷曲形、嵌套形折叠充气管的有限元建模方法。折叠充气管在进行有限元建模时,由于折叠部位内外层蒙皮的长度不一致给模型带来几何误差。不同的折叠方式建模技巧各不相同,引入的误差量也各不相同,本文着重分析了Z形折叠和卷曲形折叠建模所产生的几何误差,并提出了相应的修正方法。针对三种典型折叠方式,建立了相应的有限元模型,并应用控制体积算法实现了充气管的展开仿真。仿真结果验证了修正方法的有效性。增加尼龙粘扣是实现长卷曲折叠管的有控制展开的有效手段之一,本文采用失效连接来模拟尼龙粘扣的作用,比较了有、无尼龙粘扣的卷曲管的展开过程。仿真结果表明采用尼龙粘扣既不会明显带来充气管额外质量和刚度的增加,又可保证展开次序和展开方向的可控性,改善了展开过程的稳定性。 Finite element models of three typical folded inflatable tubes,respectively named Z-folded,telescopicallyfolded,and coiled configurations,are established,and a control volume method is applied to simulate the deployment process.Different folded configurations can introduce different geometry errors during the finite element modeling of inflatable tubes.Reasons of the modeling geometry errors due to Z folding and coiled folding,and modification methods of geometry error for every folding configuration are presented in this paper.The comparison of simulation results shows that the presented modeling modification method can reduce the effect of geometry errors on simulation results.Finally,a finite element model of a coiled tube with a Velcro strip is discussed,and the Velcro strips are modeled as breakable joints between nodes belonging to different skin layers.The numerical simulation results of coiled tube with or without Velcro strip indicate that Velcro strip can improve the deployment stability of coiled tube,and it is feasible that using the Velcro strip to control the deployment of a long coiled tube,and its additional stiffness and mass is negligible.
出处 《宇航学报》 EI CAS CSCD 北大核心 2010年第11期2610-2617,共8页 Journal of Astronautics
基金 国家自然科学基金(10602045) 高等学校学科创新引智计划(B07050)
关键词 折叠 卷曲管 展开 可控体积 Folding Coiled tube Deployment Controllable volume
  • 相关文献

参考文献12

  • 1Jenkins C H M.Gossamer spacecraft:membrane and inflatable structures technology for space applications[M] ,AIAA,2001.
  • 2Cadogan D,Graham W,Smith T.Inflatable and rigidizable wing components for unmanned aerial vehicles[C].44th AIAA/ASME/ASCE/AHS/ASC structures,Structural Dynamics and Materials Conference,Norfolk,VA,April,2003,AIAA-2003-6630:1-9.
  • 3Clem A L,Smith S W,Main J A.A Pressurized deployment model for inflatable space structures[C].41thAIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference,Reston,VA,April 2000,AIAA 2000-1808:1-11.
  • 4Salama M,Kuo C P,Lou M.Simulation of deployment dynamics of inflatable structures[J].AIAA Journal,2000,38(12):2277-2283.
  • 5Salama M,Fang H,Lou M.Resistive deployment of inflatable structures using velcro[J].Journal of Spacecraft and Rockets,2002,39(5):711―716.
  • 6Wang J T,Johnson A R.Deployment simulation of ultra-lightweight inflatable structures[C].43rd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference,Denver,Colorado,April 2002,AIAA-2002-1261:1-18.
  • 7Lienard S,Lefever Y.Modeling and analysis of the deployment of a rolled inflatable beam using MSC-DYTRAN[C].46th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics & Materials Conference,Austin,Texas,April 2005,AIAA 2005-1968:1-11.
  • 8马春生,黄世霖,张金换.气袋折叠建模中的几何误差分析与修正[J].清华大学学报(自然科学版),2004,44(11):1540-1543. 被引量:3
  • 9刘晓峰,谭惠丰,杜星文.充气太空管展开模拟[J].哈尔滨工业大学学报,2004,36(5):684-687. 被引量:10
  • 10卫剑征,毛丽娜,杜星文.空间卷曲折叠管充气控制展开动力学研究[J].工程力学,2009,26(1):227-232. 被引量:10

二级参考文献33

  • 1刘晓峰,杜星文,万志敏.充气展开管弯折挠曲研究[J].工程力学,2005,22(5):225-230. 被引量:2
  • 2Freeland R E, Veal G R. Significance of the inflatable antenna experiment technology [C]. 7th AIAA/USAF/ NASA/ISSMO Multidisciplinary Analysis and Optimization Symposium. St. Louis MO: AIAA, 1998. AIAA-98-2104.
  • 3Lin J K, Watson J J, Jones T W. Ultra lightweight isogrid boom space experiment (UltraBoom^TM) systems design [C]. 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Confer. Austin, Texas: AIAA, 2005. AIAA-2005-1971.
  • 4Lienard S, Lefevre Y. Modeling and analysis of the deployment of a rolled inflatable beam using MSC-Dytran [C]. 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Confer. Austin, Texas: AIAA, 2005. AIAA-2005-1968.
  • 5Salama M, Kuo C P, Lou M. Simulation of deployment dynamics of inflatable structures [J]. AIAA Journal, 2000, 38(12): 2277-2283.
  • 6Salama M, Fang H, Lou M. Resistive deployment of inflatable structures [J]. Journal of Spacecraft and Rockets, 2002, 39(5): 711-716.
  • 7Fang H, Lou M, Hah J. Deployment study of a self-rigidizable inflatable boom [J]. Journal of Spacecraft and Rockets, 2006, 43(1): 25-30.
  • 8Steele C R. Fay J E Inflation of rolled tubes [C]. Proceedings of the IUTAM-IASS Symposium on Deployable Structures: Theory and Application. Netherlands: Kluwer Academic Publishers, 1998. 393-403.
  • 9Fay J P, Steele C R. Forces for rolling and asymmetric pinching of pressurized cylindrical tubes [J]. Journal of Spacecraft and Rockets, 1999, 36(4): 531 -535.
  • 10Wang J T, Johnson A R. Deployment simulation of ultra-lightweight inflatable structures [C]. 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Confer. Denver, Colorado: AIAA, 2002. AIAA-2002-1261.

共引文献21

同被引文献63

引证文献7

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部