期刊文献+

基于跳辨识-MCMC组合算法的人民币汇率跳扩散模型参数估计问题 被引量:4

Parameter estimation of CNY exchange rates of jump-diffusion model using mixed algorithm of jump identification and MCMC
原文传递
导出
摘要 针对人民币汇率收益率时间序列数据存在的跳变特征,采用跳扩散模型对其时间序列数据进行描述.为识别跳变规律并解决模型的参数估计问题,提出了基于跳辨识-MCMC的组合算法:即结合Lee-Mykland的跳辨识方法与MCMC(蒙特卡罗马尔可夫链)方法形成组合算法,利用仿真实验,通过误差分析得出组合算法在跳扩散模型参数估计方面效果明显优于单一MCMC方法.以人民币/美元日汇率数据为样本进行实证分析,结果表明组合算法不但能较为准确地识别出汇率收益率的跳变时刻及规律,而且其模型参数估计的有效性大大提高. Since the returns of the CNY exchange rates present some jump features, this paper uses the jump-diffusion model to describe their sequential data. For identifying the law of jumps and solving the parameter estimation of the model, the paper proposes the mixed algorithm based on the jump identification and MCMC methods, i.e., combination of the Lee-Mykland jump identifying method and MCMC. By the simulation experiment, the error analysis shows that the mixed algorithm is superior to the simple MCMC method in estimating the parameters of the jump diffusion model. Also, empirical results sampling by the CNY/USD exchange rates of return show that the mixed algorithm can not only identify the accurate dates and laws of jumps of exchange rate returns, and the estimation validity of the model parameters improves considerably.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2010年第12期2165-2171,共7页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(70771018) 山东省自然科学基金(2009ZRB019AV) 国家博上后科学基金(20070410350) 鲁东大学金融信息工程实验室资助项目
关键词 跳辨识-MCMC组合算法 跳扩散模型 维纳过程 泊松过程 mixed algorithm of jump identification and MCMC jump-diffusion model Wiener process Poisson process
  • 相关文献

参考文献21

  • 1Yu J, Yang Z L. Zhang X B. A class of nonlinear stochastic volatility models and its implications for pricing currcncy options[J]. Computational Statistics & Data Analysis, 2006, 51(4): 2218- 2231.
  • 2肖庆宪,茆诗松.汇率模型与期权定价[J].应用概率统计,2002,18(1):67-70. 被引量:6
  • 3冯芸,吴冲锋.过渡阶段的汇率动态模型[J].系统工程学报,2003,18(6):571-574. 被引量:5
  • 4吴骏.对人民币汇率进一步研究[J].预测,2001,20(2):17-19. 被引量:5
  • 5Meyer R, Yu U. BUGS for a Bayesian analysis of stochastic volatility models[J]. Econometrics Journal, 2000, 3: 198 -215.
  • 6Vedat A, Geoffrey B G. Mixed diffusion-jump process modeling of exchange rate movements[J]. The Review of Economics and Statistics, 1988, 70(4): 631 -637.
  • 7Akgiray V, Booth G. Mixed diffusion-jump process modeling of exchange rate movements[J]. Review of Economics and Statistics, 1988, 70:631 -637.
  • 8Merton R C. Option pricing when underlying returns are discontinuous[J]. Journal of Financial Economics, 1976, 3(1- 2): 125- 144.
  • 9Chen S W. GARCH, jumps and permanent and transitory components of volatility: The case of Taiwan exchange rate[J]. Mathematics and Computers in Simulation, 2004, 67(3): 201--216.
  • 10Akgiray V, Booth G. Mixed diffusion-jump process modeling of exchange rate movements[J]. Review of Economics and Statistics, 1988, 70: 631-637.

二级参考文献9

共引文献9

同被引文献31

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部