期刊文献+

解两点边值问题的一类修改的三次有限体积元法 被引量:11

A CLASS OF MODIFIED CUBIC FINITE VOLUME ELEMENT METHOD FOR SOLVING TWO-POINT BOUNDARY VALUE PROBLEMS
原文传递
导出
摘要 构造了求解两点边值问题的一类修改的Lagrange型三次有限体积元法.试探函数空间取以四次Lobatto多项式的零点作为插值节点的Lagrange型三次有限元空间.将插值多项式的导数超收敛点(应力佳点)作为对偶单元的节点,检验函数空间取相应于对偶剖分的分片常数函数空间.证明了新方法具有最优的H^1模和L^2模收敛阶,讨论了在应力佳点导数的超收敛性,并通过数值实验验证了理论分析结果. In this paper, a class of modified Lagrangian cubic finite volume element method is presented for solving two-point boundary value problems. The trial function space is taken as the Lagrangian cubic finite element space which uses the zero points of quartic Lobatto polynomial as the interpolation nodes. We use the superconvergence points (optimal stress points) of the derivative by the interpolation polynomial as the nodes of the dual unit, the test function space is defined as the piecewise constant function space. It is proved that the method has optimal convergence orders of H^1 and L^2 norms. The superconvergence of numerical derivatives at optimal stress points is discussed. Finally, the numerical experiments show the validity of theoretical analysis
出处 《计算数学》 CSCD 北大核心 2010年第4期385-398,共14页 Mathematica Numerica Sinica
基金 吉林大学"985工程"项目基金 国家自然科学基金(批准号:10971082)
关键词 两点边值问题 三次有限体积元法 应力佳点 误差估计 Two-point boundary value problems cubic finite volume element method optimal stress points error estimate
  • 相关文献

参考文献11

  • 1Li R H,Chen Z Y and Wu W.Generalized difference methods for differential equations:numerical analysis of finite volume element methods[M].New York:Marcel Dekker,2000.
  • 2李荣华.两点边值问题的广义差分法.吉林大学自然科学学报,1982,(2):140-152.
  • 3吴微,李荣华.解一维二阶椭圆和抛物型微分方程的广义差分法[J].数学年刊(A辑),1984,9(3):303-312. 被引量:21
  • 4Li Q and Jiang Z.Optimal maximum norm estimates and superconvergence for GDM on two-point boundary value problems[J].Northeast Math J.,1999,15(1):89-96.
  • 5倪平 吴微.广义Galerkin方法的超收敛估计.高等学校计算数学学报,1986,(2):153-158.
  • 6向新民.解两点边值问题的广义差分法,Lagrange二次元.黑龙江大学自然科学学报,1982,(2):25-34.
  • 7Plexousakis M and Zouraris G E.On the construction and analysis of high order locally conservative finite volume-type methods for one-dimensional elliptic problems[J].SIAM J.Numer.Anal.,2004,42(3):1226-1260.
  • 8郭伟利,王同科.两点边值问题基于应力佳点的一类二次有限体积元方法[J].应用数学,2008,21(4):748-756. 被引量:13
  • 9于长华,李永海.解两点边值问题的基于应力佳点的二次有限体积元法[J].吉林大学学报(理学版),2009,47(4):639-648. 被引量:13
  • 10Gao G H,Wang T K.Cubic superconvergence finite volume element method for one-dimensional elliptic and parabolic equations[J].J.Appl.Math.Comput.,2010,233(9):2285-2301.

二级参考文献15

  • 1陈仲英.广义差分法一次元格式的L^2-估计[J].中山大学学报(自然科学版),1994,33(4):22-28. 被引量:9
  • 2Cai Zhiqiang,Steve McCormick. On the accuracy of the finite volume element method for diffusion equations on composite grid[J]. SIAM J. Numer. Anal, , 1990,27(3): 336-655.
  • 3Suli E. Convergence of finite volume schemes for Poissoffs equation on nonuniform meshes[J]. SIAM J. Numer. Anal. , 1991,28(5) : 1419-1430.
  • 4Jones W P, Menziest K R. Analysis of the cell-centred finite volume method for the diffusion equation[J]. Journal of Computational Physics, 2000,165:45-68.
  • 5Shu Shi, Yu H aiyuan, H uang Yunqing,Nie Cunyun. A symmetric finite volume element scheme on quadrilateral grids and superconvergence[J]. International Journal of Numerical Analysis and Modeling, 2006, 3(3) :348-360.
  • 6Li Ronghua,Chen Zhongying, Wu Wei. Generalized Difference Methods for Differential Equations Numerical Analysis of Finite Volume Methods[M]. Monographs and Textbooks in Pure and Applied Mathematics 226, Marcel Dekker Inc. ,2000.
  • 7Cai Zhiqiang, Jim Douglas J r, Moongyu Park. Development and analysis of higher order finite volume methods over rectangles for elliptic equations[J]. Advances in Computational Mathematics, 2003,19:3--33
  • 8Wang Tongke. High accuracy finite volume element method for two-point boundary value problem of second ordinary differential equation[J]. Numberical Mathematics,A Journal of Chinese Universities, 2002. 11(2) :197-212.
  • 9Ciarlet P G. The Finite Element Methods for Elliptic Problems[M]. Amsterdam; North-Holland, 1978.
  • 10李荣华.两点边值问题的广义差分方法[J].吉林大学自然科学学报,1982,1:26-40.

共引文献41

同被引文献55

引证文献11

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部