期刊文献+

矩阵方程AXB+CXD=F对称解的迭代算法 被引量:10

AN ITERATIVE METHOD FOR SYMMETRIC SOLUTIONS OF THE MATRIX EQUATION AXB+ CXD=F
原文传递
导出
摘要 在共轭梯度思想的启发下,本文给出了迭代算法求解约束矩阵方程AXB+CXD=F的对称解及其最佳逼近.应用迭代算法,矩阵方程AXB+CXD=F的相容性可以在迭代过程中自动判断.当矩阵方程AXB+CXD=F有对称解时,在有限的误差范围内,对任意初始对称矩阵X_1,运用迭代算法,经过有限步可得到矩阵方程的对称解;选取合适的初始迭代矩阵,还可以迭代出极小范数对称解.而且,对任意给定的矩阵X_0,矩阵方程AXB+CXD=F的最佳逼近对称解可以通过迭代求解新的矩阵方程AXB+CXD=F的极小范数对称解得到.文中的数值例子证实了该算法的有效性. Motivated by the conjugate gradient method, an iterative algorithm is presented to solve the linear matrix equation AXB + CXD = F over symmetric matrix X and its optimal approximation. By this method, the solvability of the equation AXB + CXD = F over symmetric X can be determined automatically. When the equation AXB + CXD = F is consistent over symmetric X, its solution can be obtained within finite iteration steps in the absence of round off errors for any initial symmetric matrix X1, and its least-norm symmetric solution can be derived by choosing a suitable initial iterative matrix. Furthermore, its optimal approximation to the given matrix X0 can be obtained by choosing the least-norm symmetric solution of a new matrix equation AX^-B + CX^-D =F^-. Some numerical examples verify the efficiency of the algorithm.
作者 周海林
出处 《计算数学》 CSCD 北大核心 2010年第4期413-422,共10页 Mathematica Numerica Sinica
关键词 矩阵方程 迭代算法 对称解 极小范数解 最佳逼近 matrix equation iterative algorithm symmetric solution least-norm solution optimal approximation
  • 相关文献

参考文献7

  • 1Roger A Horn,Charles R.Johnson.Topics in Matrix Analysis[M].北京:人民邮电出版社,2005,241-242.
  • 2Gene H Golub,Charles F Van Loan.Matrix Computations[M].Baltimore:The Johns Hpkins University Press,1996,53-644.
  • 3Charles F Van Loan.Generalizing the singular value decomposition[J].SIAM J.Numer Anal.,1976,(13):76-83.
  • 4Moody T Chu,Robert E Funderlic,Gene H Golub.On a variational formulation of the generalized singular value decomposition[J].SIAM J.Matrix Anal.Appl.,1997,(18):1082-1092.
  • 5Gene H Golub,Zha Hongyuan.Perturbation analysis of the canonical correlations of marix pairs[J].Linear Algebra Appl.,1994,(210):3-28.
  • 6Peng Zhenyun,Peng Yaxin.An efficient iterative method for solving the matrix equation A×B+CYD=E[J].Numer Linear Algebra Appl.,2006,(13):473-485.
  • 7Wang Minghui,Cheng Xuehan,Wei Musheng.Iterative algorithms for solving the matrix equation A×B+CXTD=E[J].Appl.Math.Comput.,187(2):622-629.

同被引文献32

  • 1张凯院,蔡元虎.矩阵方程AXB+CXD=F的参数迭代解法[J].西北大学学报(自然科学版),2006,36(1):13-16. 被引量:16
  • 2Baksalary JK, Kala R. The Matrix Equation AXB + CYD = E[J] . Linear Algebra and Its Applications, 1980,30: 141 -147.
  • 3Higham NJ. Computing A Nearest Symmetric Positive Semidefi-nite Matrix[ J ]. Linear Algebra and Its Applications, 1988,103 :103 - 118.
  • 4Shim S - Y,Chen Y. Least Squares Solution of Matrix Equation[J]. SIAM Journal on Matrix Analysis and Applications,2003,3:8002 - 8008.
  • 5Rump S M. Kleine Fehlerschranken bei matrix problemen[ D ]. Karlsruhe:Universitat Karlsruhe, 1980.
  • 6Essex C, Davison M, Schulzky C. Numerical monsters [ J 1. ACM SIGSAM Bulletin, 2000,34 (4) : 16-32.
  • 7Rump S M. INTLAB-interval laboratory//developments in reliable computing [ M ]. Dordrecht : Kluwer Academic Publishers, 1999:77-104.
  • 8Frommer A, Hashemi B. Verified computation of square roots of a matrix [ J ]. SIAM Journal on Matrix Analysis and Applications, 2010,31 (3) : 1279-1302.
  • 9Frommer A, Hashemi B. Verified error bounds for solutions of Sylvester matrix equations [ J ]. Linear Algebra and Its Applications, 2012,436 ( 2 ) : 405-420.
  • 10Essex C, Davison M, Schulzky C. Numerical monsters [ J ]. ACM SIGSAM Bulletin, 2000,34 (4) : 16-32.

引证文献10

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部