期刊文献+

一类含有非线性项的八阶微分方程同宿轨道解的存在性

Existence of Homoclinic Solutions of Some Nonlinear Eighth-order Differential Equations
下载PDF
导出
摘要 本文运用Brezis-Nirenberg型山路引理和集中紧性原理研究了八阶微分方程u(viii)+Au(vi)+Bu(iv)+Cu″'-Du+u|u|σ=0的同宿轨道解的存在性. In this paper we study the homoclinic solutions of the eighth-order differential equation: u(viii) + Au(vi) + Bu(iv) + Cu″-Du-u | u | σ = 0 by mountain-pass theorem of Brezis-Nirenberg and concentration-compactness arguments.
出处 《中央民族大学学报(自然科学版)》 2010年第4期42-45,共4页 Journal of Minzu University of China(Natural Sciences Edition)
基金 教育部留学回国人员科研启动基金资助项目
关键词 八阶微分方程 同宿轨道解 集中紧性原理 山路引理 eighth-order DE homoclinic solutions concentration-compactness arguments mountain-pass theorem
  • 相关文献

参考文献10

  • 1J V CHAPAROVA,L A PELETIER, S A TERSIAN. Existence and Nonexistence of Nontrivial Solutions of Semilinear Sixth-order Ordinary Differential Equations[ J]. Appl. Math. Lett,2004,17:1207 - 1212.
  • 2S TERSIAN, J CHAPAROVA. Periodic and homoclinic solutions of extended Fisher-Kolmogorov equations[ J]. J. Math. Anal. Appl,2001,260 : 490 - 506.
  • 3S TERSIAN, JULIA CHAPAROVA. Periodic and homoclinic solutions of some semilinear sixth-order differential equations[ J]. J. Math. Anal,2002,272 : 223 - 239.
  • 4M A PELETIER. Non-existence and Uniqueness Results for the Extended Fisher-Kolmogorov Equation [ R ]. CWI. Modelling ,Analysis and Simulation, 1999, R9903,1 - 19.
  • 5M BERGER. Nonlinearity and Functional Analysis[ M]. New York: Academic Press, 1977.
  • 6J MAWHIN,M WILLEM. Critical point theory and Hamiltonian systems [ M ]. Springer-Verlag New York Inc. , 1989, Applied mathematical sciences : Vol. 74.
  • 7RABINOWITZ, P H. Minimax methods in critical point theory with applications for differential equations [ S ]. Conference Board of the Mathematical Sciences regional conference series in mathematics, no. 65, 1984, ISSN 0160 -7642.
  • 8BENCI V,RABINOWITZ P H. Critical point theorems for indefinite functional [ J ]. Inventions math. , 1979,52:241 - 273.
  • 9H BREZIS, L NIRENBERG. Remarks on finding critical points[ J]. Comm. Pure AppL Math. , 1991, 44:939 -963.
  • 10高利辉,李成岳.一类立方非线性型八阶常微分方程周期解的多重存在性[J].中央民族大学学报(自然科学版),2008,17(1):13-18. 被引量:1

二级参考文献8

  • 1[1]RABINOWITZ P H.Minimax methods in critical point theory with applications for differential equations[C]//CBMS Regional Conference,1984.
  • 2[2]BENCI V,RABINOWITZ P H.Critical point theorems for indefinite functional[J].Inventions math.,1979,52:241-273.
  • 3[3]J MAWHIN,M WILLEM.Critical point theory and Hamiltonian systems[J].Applied Mathematical Sciences,1989,74.
  • 4[5]J V CHAPAROVA,L A PELETIER,S A TERSIAN.Existence and Nonexistence of Nontrivial Solutions of Semilinear Sixth-order Ordinary Differential Equations[J].Appl.Math.Left,2001,17:1207-1212.
  • 5[6]S TERSIAN,J CHAPAROVA.Periedic and homoclinic solutions of extended Fisher-Kolmogorov equations[J].J.Math.Anal.Appl,2001,260:490-506.
  • 6[7]S TEBSIAN,JULIA CHAPAROVA.Periodic and homoclinic solutions of some semilinear sixth-order differential equations[J].J.Math.Anal,2002,272:223-239.
  • 7[8]M A PELETTER.Non-existence and Uniqueness Results for the Extended Fisher-Kolmogorov Equation[C]//MAS-R9903 March,1999,3.
  • 8[9]M BERGER.Nonlinearity and Functional Analysis[M].New York:Academic Press,1977.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部