一类含有非线性项的八阶微分方程同宿轨道解的存在性
Existence of Homoclinic Solutions of Some Nonlinear Eighth-order Differential Equations
摘要
本文运用Brezis-Nirenberg型山路引理和集中紧性原理研究了八阶微分方程u(viii)+Au(vi)+Bu(iv)+Cu″'-Du+u|u|σ=0的同宿轨道解的存在性.
In this paper we study the homoclinic solutions of the eighth-order differential equation: u(viii) + Au(vi) + Bu(iv) + Cu″-Du-u | u | σ = 0 by mountain-pass theorem of Brezis-Nirenberg and concentration-compactness arguments.
出处
《中央民族大学学报(自然科学版)》
2010年第4期42-45,共4页
Journal of Minzu University of China(Natural Sciences Edition)
基金
教育部留学回国人员科研启动基金资助项目
关键词
八阶微分方程
同宿轨道解
集中紧性原理
山路引理
eighth-order DE
homoclinic solutions
concentration-compactness arguments
mountain-pass theorem
参考文献10
-
1J V CHAPAROVA,L A PELETIER, S A TERSIAN. Existence and Nonexistence of Nontrivial Solutions of Semilinear Sixth-order Ordinary Differential Equations[ J]. Appl. Math. Lett,2004,17:1207 - 1212.
-
2S TERSIAN, J CHAPAROVA. Periodic and homoclinic solutions of extended Fisher-Kolmogorov equations[ J]. J. Math. Anal. Appl,2001,260 : 490 - 506.
-
3S TERSIAN, JULIA CHAPAROVA. Periodic and homoclinic solutions of some semilinear sixth-order differential equations[ J]. J. Math. Anal,2002,272 : 223 - 239.
-
4M A PELETIER. Non-existence and Uniqueness Results for the Extended Fisher-Kolmogorov Equation [ R ]. CWI. Modelling ,Analysis and Simulation, 1999, R9903,1 - 19.
-
5M BERGER. Nonlinearity and Functional Analysis[ M]. New York: Academic Press, 1977.
-
6J MAWHIN,M WILLEM. Critical point theory and Hamiltonian systems [ M ]. Springer-Verlag New York Inc. , 1989, Applied mathematical sciences : Vol. 74.
-
7RABINOWITZ, P H. Minimax methods in critical point theory with applications for differential equations [ S ]. Conference Board of the Mathematical Sciences regional conference series in mathematics, no. 65, 1984, ISSN 0160 -7642.
-
8BENCI V,RABINOWITZ P H. Critical point theorems for indefinite functional [ J ]. Inventions math. , 1979,52:241 - 273.
-
9H BREZIS, L NIRENBERG. Remarks on finding critical points[ J]. Comm. Pure AppL Math. , 1991, 44:939 -963.
-
10高利辉,李成岳.一类立方非线性型八阶常微分方程周期解的多重存在性[J].中央民族大学学报(自然科学版),2008,17(1):13-18. 被引量:1
二级参考文献8
-
1[1]RABINOWITZ P H.Minimax methods in critical point theory with applications for differential equations[C]//CBMS Regional Conference,1984.
-
2[2]BENCI V,RABINOWITZ P H.Critical point theorems for indefinite functional[J].Inventions math.,1979,52:241-273.
-
3[3]J MAWHIN,M WILLEM.Critical point theory and Hamiltonian systems[J].Applied Mathematical Sciences,1989,74.
-
4[5]J V CHAPAROVA,L A PELETIER,S A TERSIAN.Existence and Nonexistence of Nontrivial Solutions of Semilinear Sixth-order Ordinary Differential Equations[J].Appl.Math.Left,2001,17:1207-1212.
-
5[6]S TERSIAN,J CHAPAROVA.Periedic and homoclinic solutions of extended Fisher-Kolmogorov equations[J].J.Math.Anal.Appl,2001,260:490-506.
-
6[7]S TEBSIAN,JULIA CHAPAROVA.Periodic and homoclinic solutions of some semilinear sixth-order differential equations[J].J.Math.Anal,2002,272:223-239.
-
7[8]M A PELETTER.Non-existence and Uniqueness Results for the Extended Fisher-Kolmogorov Equation[C]//MAS-R9903 March,1999,3.
-
8[9]M BERGER.Nonlinearity and Functional Analysis[M].New York:Academic Press,1977.
-
1高利辉,李成岳.一类立方非线性型八阶常微分方程周期解的多重存在性[J].中央民族大学学报(自然科学版),2008,17(1):13-18. 被引量:1
-
2王学保,蔡果兰.一类超二次六阶半线性微分方程同宿轨道解的存在性[J].中央民族大学学报(自然科学版),2009,18(S1):18-21.
-
3冯培娟,刘晓娜,谢旋.一类满足Costa非二次型条件六阶半线性微分方程同宿轨道解的存在性研究[J].科技传播,2011,3(10):119-119.
-
4冯培娟,刘晓娜,谢旋.一类满足Costa非二次型条件六阶半线性微分方程同宿轨道解的存在性研究[J].科技传播,2011,3(11):126-126.